

American Journal of Networks and Communications
2014; 3(5-1): 57-69
Published online July 30, 2014 (http://www.sciencepublishinggroup.com/j/ajnc)
doi: 10.11648/j.ajnc.s.2014030501.15
ISSN: 2326-893X (Print); ISSN: 2326-8964 (Online)

Modeling of single computing nodes of parallel computers
Peter Hanuliak, Michal Hanuliak

Dubnica Technical Institute, Sladkovicova 533/20, Dubnica nad Vahom, 018 41, Slovakia

Email address:
phanuliak@gmail.com (P. Hanuliak), michal.hanuliak@gmail.com (M. Hanuliak)

To cite this article:
Peter Hanuliak, Michal Hanuliak. Modeling of Single Computing Nodes of Parallel Computers. American Journal of Networks and
Communications. Special Issue: Parallel Computer and Parallel Algorithms. Vol. 3, No. 5-1, 2014, pp. 57-69.
doi: 10.11648/j.ajnc.s.2014030501.15

Abstract: The paper describes analytical modeling for single computing nodes of parallel computers. At first the paper
describes very shortly the developing steps of parallel computer architectures and then he summarized the basic concepts for
performance evaluation. To illustrate theoretical evaluation concepts the paper considers in its experimental part the achieved
results on concrete analyzed examples and their comparison. The suggested analytical models consider for single computing
node based on processor or core and SMP modeling of own computer node´s activities and node´s communication channels
of performed data communications within computing node queuing theory systems M/D/m or M/D/. In case of using SMP
parallel system as node computer the suggested models consider for own node’s activities M/M/m or M/D/m queuing theory
systems. Although we are able to use other more complicated queuing theory systems we prefer modeling with mentioned
models because achieved results for these models we can use in decomposed modeling of coupled computing nodes as
network of workstations (NOW) or network of massive NOW modules (Grid). The achieved results of the developed
analytical models we have compared with the results of tested computing nodes with other alternative evaluation method
based on suitable benchmarks to verify developed analytical models. The developed analytical models could be used under
various ranges of input analytical parameters, which influence the architecture of analyzed computing nodes which are
interested for the praxis.

Keywords: Parallel Computer, Computing Node, Network of Workstation (NOW), Grid, Analytical Modeling,
Queuing Theory, Performance Evaluation, Queuing Theory System, Benchmark

1. Developing Periods of Parallel
Computers

In the first period of parallel computers between 1975
and 1995 dominated scientific supercomputers, which were
specially designed for the high performance computing
(HPC). These parallel computers have been mostly used
computing models based on data parallelism. Those
systems were way ahead of standard common computers in
terms of their performance and price. Increased processor
performance was caused through massive using of various
parallel principles in all forms of produced processors.
Parallel principles were used so in single PC’s and
workstations (scalar or super scalar pipeline, symmetrical
multiprocessor systems SMP) [5] so as on extreme
powerful PC as in various connected network of
workstations (NOW, cluster). Gained experience with the
implementation of parallel principles and intensive

extensions of computer networks, leads to the use of
connected computers for parallel solution. This period we
can name as the second developing period. Their large
growth since 1980 have been stimulated by the
simultaneous influence of three basic factors [10, 29]

• high performance processors and computers
• high speed interconnecting networks
• standardized tools to development of parallel

algorithms (OpenMP, MPI, Java).
Developing trends are actually going toward building of

wide spread connected NOW networks with high
computation and memory capacity (Grid). Conceptually
Grid comes to the definition of meta computer [20], where
meta computer could be understood as big computer
network consisting on massive number of computing nodes,
memories and other needed resources together creating an
illusion of one single powerful supercomputer. These high
integrated forms of NOW’s create various Grid systems or
meta computers we could define as the third period of

58 Peter Hanuliak and Michal Hanuliak: Modeling of Single Computing Nodes of Parallel Computers

parallel computers.

2. Basic Modules of Parallel Computers
Basic technical components of parallel computers

illustrate Fig. 1 as follows
• modules of processors, cores of mix of them
• modules of computers (Sequential, parallel)
• memory modules
• input/output (I/O) modules.
These modules are connected through intern high speed

communication networks (within concrete module) and
extern among used computing modules via high speed
communication networks [25, 35].

Figure 1. Basic building modules of parallel computers.

2.1. Classification of Parallel Computer

It is very difficult to classify all to this time realized
parallel computers. The basic classification is from the
point of realized memory as follows

• parallel computers with shared memory
(multiprocessors, multicores)

• parallel computers with distributed memory (mainly
based on computer networks)

• others.

2.1.1. Parallel Computers with Shared Memory
We can name realized parallel computers with shared

memory as follows
• switched system
• multi bus system
• vector processor
• array processor
• associative processor
• transputer
• pipeline system
• systolic system
• wave front array system
• cellular system
• n-dimension cubes
• algorithm structured
• supercomputers
• connection machines
• super reliable
• neural networks.

2.1.2. Parallel Computers with Distributed Memory
To this group of parallel computers belong mainly

parallel computers based on some form of network
connection as follows

• localcomputer networks (LAN)
� network of workstations (NOW)
� PC farms, clusters
� others

• wide area networks (WDN)
� network of NOW networks (Grid)|
� meta computers (Internet)
� others.

2.2. Classification from the Point of Programmer

But from the point of programmer we divide them to the
two following different groups

• synchronous parallel architectures. These are used for
performing the same or very similar process
(independent part) on different sets of data (data
parallelism) in active computing nodes of parallel
system. They are often used under central control that
means under the global clock synchronization (vector,
array system etc.) or a distributed local control
mechanism (systolic systems etc.). This group consists
mainly of parallel computers (centralized
supercomputers) with any form of shared memory.
Shared memory defines typical system features and in
some cases can in considerable measure reduces
developing of some parallel algorithms. To this group
belong actually dominated parallel computers based
on multiply cores, processors or mix of them and most
of realized massive parallel computers (classic
supercomputers) [5, 31]. Basic common
characteristics are as following
� shared memory (at least a part of memory)
� using shared memory for communication
� supported developing standard OpenMP,

OpenMP Threads, Java
• asynchronous parallel computers. They are composed

of a number of fully independent computing nodes
(processors, cores or computers) which are connected
through some communication network. To this group
belong mainly various forms of computer networks
(cluster), network of powerful workstation (NOW|) or
more integrated network of NOW networks (Grid).
Any cooperation and control are performed through
inter process communication mechanisms (IPC) per
realized remote or local communication channels.
According the latest trends asynchronous parallel
computers based on PC computers (single, SMP) are
dominant parallel computers. Basic common
characteristics are as following [10, 29]
� no shared memory (distributed memory)
� computing node could have some form of local

memory where this memory in use only by
connected computing node

� cooperation and control of parallel processes

 American Journal of Networks and Communications 2014; 3(5-1): 57-69 59

only using asynchronous message
communication

� supported developing standard
o MPI (Message passing interface)
o PVM (Parallel virtual machine)
o Java.

3. Typical Architectures of Modern
Parallel Computers

3.1. Symmetrical Multiprocessor System

Symmetrical multiprocessor system (SMP) is a multiple
using of the same processors or cores which are
implemented on motherboard in order to increase the whole
performance of such system. Typical common
characteristics are following

• each processor or core (computing node) of the
multiprocessor system can access main memory
(shared memory)

• I/O channels or I/O devices are allocated to individual
computing nodes according their demands

• integrated operation system coordinates cooperation
of whole multiprocessor resources (hardware,
software etc.).

Concept of multiprocessor system illustrates Fig. 2.

Memory
Bank 0-3

Memory
Bank 0-3

Max
16 GB

Max
16 GB

PROfusion

Pent.
III x.

Pent.
III x.

Pent.
III x.

Pent.
III x.

Pent.
III x.

Pent.
III x.

Pent.
III x.

Pent.
III x.

Bus 1

Bus 2 Bus 2

Left bus
100 MHz

Right bus
100 MHz

Left memory
port (Cache)

Right memory
port (Cache)

PCI
bridge

PCI
bridge

PCI
bridge

PCI
bridge

Bus 13
100 MHz V/V bus

Control cards
64-bit

v/v bus

Slots
64-bit.,
66 MHz

“hot plug”

PROfusion - cross of 3 bus and 2 memory ports (parallel)

PCI cards - type Enthanced PCI (64 bit, 66 MHz, “Hot Plug” - on-line exchange)

switch

PCI PCI PCI PCI

Figure 2. Single computing node based on SMP (8-processors Intel Xeon).

3.2. Network of Workstations

There has been an increasing interest in the use of
networks of workstations (NOW) connected together by
high speed networks for solving large computation
intensive problems. This trend is mainly driven by the cost
effectiveness of such systems as compared to massive
multiprocessor systems with tightly coupled processors and
memories (supercomputers). Parallel computing on a
network of workstations connected by high speed networks
has given rise to a range of hardware and network related

issues on any given platform [3]. With the availability of
cheap personal computers, workstations and networking
devises, the recent trend is to connect a number of such
workstations to solve computation intensive tasks in
parallel on such clusters. Network of workstations [17, 19]
has become a widely accepted form of high performance
computing (HPC). Each workstation in a NOW is treated
similarly to a processing element in a multiprocessor
system. However, workstations are far more powerful and
flexible than processing elements in conventional
multiprocessors (supercomputers). To exploit the parallel
processing capability of a NOW, an application algorithm
must be paralleled. A way how to do it for an application
problem builds its decomposition strategy. We will refer to
it in [13].

Typical example of networks of workstations also for
solving large computation intensive problems is at Fig. 3.
The individual workstations are mainly extreme powerful
personal workstations based on multiprocessor or multicore
platform [1, 36]. Parallel computing on a cluster of
workstations connected by high speed networks has given
rise to a range of hardware and network related issues on
any given platform.

Parallel Applications

Parallel Programming Environments
Sequential Applications

Cluster
Supporting SW (Midlleware)

PC/Workstation

C om n. Drivers
(SW)

N etw ork ca rd
(H W)

PC/Workstation

C om n. D riv ers
(SW)

N etw ork card
(H W)

High Speed Network/Switch

PC/Workstation

C om n. D riv ers
(SW)

N etw ork card
(H W)

Figure 3. Typical architecture of NOW.

On such modular parallel computer we have been able to
study basic problems in parallel computing (parallel and
distributed computing) as load balancing, inter processor
communication IPC [22, 32], modeling and optimization of
parallel algorithms etc. [2, 14]. The coupled computing
nodes PC1, PC2, ...,PCi (workstations) could be single
extreme powerful personal computers or SMP parallel
computers. In this way parallel computing on networks of
conventional PC workstations (single, multiprocessor,
multicore) and Internet computing, suggest advantages of
unifying parallel and distributed computing [30].

60 Peter Hanuliak and Michal Hanuliak: Modeling of Single Computing Nodes of Parallel Computers

3.3. Grid Systems

Grid technologies have attracted a great deal of attention
recently, and numerous infrastructure and software projects
have been undertaken to realize various versions of Grids.
In general Grids represent a new way of managing and
organizing of computer networks and mainly of their
deeper resource sharing [34]. Grid systems are expected to
operate on a wider range of other resources as processors
(CPU), like storages, data modules, network components,
software (typical resources) and atypical resources like
graphical and audio input/output devices, sensors and so
one (Fig. 4.). All these resources typically exist within
nodes that are geographically distributed, and span multiple
administrative domains. The virtual machine is constituted
of a set of resources taken from a resource pool [34]. It is
obvious that existed HPC parallel computers
(supercomputers etc.) could be a member of such Grid
systems too. In general Grids represent a new way of
managing and organizing of computer networks and mainly
of their deeper resource sharing (Fig. 4).

Users Managment
(administrator)

Grid resources
(pool)

Sharing M ec hanis m s

Processor
1

Data
1

Data
i

Storage
1

Storage
j

I/O
1

I/O
k

Processor
n

Figure 4. Architecture of Grid node.

Conceptually they go out from a structure of virtual
parallel computer based on computer networks. In general
Grids represent a new way of managing and organizing of
resources like network of NOW networks. This term define
massive computational Grid with following basic
characteristics

• wide area network of integrated free computing
resources. It is a massive number of inter connected
networks, which are connected through high speed
connected networks during which time whole massive
system is controlled with network operation system,
which makes an illusion of powerful computer system
(virtual supercomputer)

• grants a function of meta computing that means
computing environment, which enables to individual
applications a functionality of all system resources

• Grid system combines distributed parallel
computation with remote computing from user
workstations.

3.4. Meta Computing

This term define massive parallel computer
(supercomputer, Grid).

The best example of existingmeta computer is Internet as
massive international network of various computer
networks. Fig. 5 illustrates Internet as virtual parallel
computer from sight of common Internet user.

Figure 5. Internet as virtual parallel computer.

Another sight to Internet as network of connected
individual computer networks is at Fig. 6. The typical
networking switches are bridges, routers, gateways etc.
which we denote with common term as network processors
[27].

Figure 6. Internet as network of connected networks.

Internet

- workstation

 American Journal of Networks and Communications 2014; 3(5-1): 57-69 61

4. Modeling in Parallel Computing
Generally model is the abstraction of the system

according Fig. 7 [15]. The functionality of the model
represents the level of the abstraction applied. That means,
if we know all there is about the system and are willing to
pay for the complexity of building a true model, the role of
abstraction is near nil. In practical cases we wish to abstract
the view we take of a system to simplify the complexity of
the real system. We wish to build a model that focuses on
some basic elements of our interest and leave the rest of
real system as only an interface with no details beyond
proper inputs and outputs. A real system could be any
parallel process or parallel computer that we are going to
model [15]. In our cases they should be applied parallel
algorithms (PA) or concrete parallel computers (SMP,
NOW, Grid etc.).

The basic conclusion is that a model is a subjective view
of modeler’s subjective insight into modeled real system.
This personal view defines what is important, what the
purposes are, details, boundaries, and so one. Therefore the
modeler must understand the system in order to guarantee
useful features of the created model.

Real system

Model

Abstraction

Figure 7. Modeling process.

4.1. Model Construction

Modeling is high creative process which incorporates
following basic assumptions

• high ability of abstract thinking
• brain storming (creativity)
• alternating behavior and strategy
• logical hierarchical approaches to differ primary and

secondary facts.
In general the development of model in any scientific

area include the collection of following steps
• define the problem to be studied as well the criteria

for analysis
• define and/or refine the model of the system. This

include development of abstractions into mathematical,
logical or procedural relationships

• collect data input to the model. Define the outside
world and what must be fed to or taken from the

model to “simulate” that world
• select a modeling tool and prepare and augment the

model for tool implementation
• verify that the tool implementation is an accurate

reflection of the model
• validate that the tool implementation provides the

desired accuracy or correspondence with the real
world system being modeled

• experiment with the model to obtain performance
measures

• analyze the tool results
• use findings to derive designs and improvements for

the real world system.
Corresponding flow diagram of model development

represents Fig. 8.

Problem

End

Graphical
illustration

Real model

Formalisation
(Mathematical model)

Problem description
analysis

Essential
properties

Accuracy

Yes
Store

Yes

No

No

Model improvement

Figure 8. Flow diagram of model development.

Computer

End

Block schema of
computer

Real model

Formalisation
(Mathematical model)

Von Neuman
 (1946)computer

Accuracy

Yes

No

Model improvement

Essential
properties

Yes
Store

No

Figure 9. Applied computer modeling.

62 Peter Hanuliak and Michal Hanuliak: Modeling of Single Computing Nodes of Parallel Computers

To practical illustration we have chosen applied
modeling of classical sequential von Neumann computer
according Fig. 9.

5. Abstract Models of Computing Nodes
5.1. Abstract model of SMP computing node with shared

memory

Basic abstract model of parallel computer with shared
memory is at Fig. 10.

Processors, cores

Communication
network

P1 P2 Pn
. . .

Shared memory
M

Figure 10. Abstract model of SMP.

5.2. Abstract Model of SMP with Distributed Memory

Basic abstract model of parallel computer with
distributed memory is at Fig. 11.

Communication
network

M
1

M2 Mn. . .

Modules of distributed memory

P1 P2 Pn. . .

Figure 11. Abstract model of NOW.

6. The Role of Performance
Quantitative evaluation and modeling of hardware and

software components of parallel systems are critical for the
delivery of high performance. Performance studies apply to
initial design phases as well as to procurement, tuning and

capacity planning analysis. As performance cannot be
expressed by quantities independent of the system
workload, the quantitative characterization of resource
demands of application and of their behavior is an
important part of any performance evaluation study [24,
33]. Among the goals of parallel systems performance
analysis are to assess the performance of a system or a
system component or an application, to investigate the
match between requirements and system architecture
characteristics, to identify the features that have a
significant impact on the application execution time, to
predict the performance of a particular application on a
given parallel system, to evaluate different structures of
parallel applications [26].

6.1. Performance Evaluation Methods

The fundamental concepts have been developed for
evaluating parallel computers. Trade-offs among these
performance factors are often encountered in real-life
applications. To the performance evaluation we can use
following methods

• analytical methods
� application of queuing theory [4, 8,16]
� asymptotic (order) analysis [13, 14]

• simulation [21]
• experimental measurement

� benchmarks [18]
� modeling tools [23]
� direct parameter measuring [6].

When we solve a model we can obtain an estimate for a
set of values of interest within the system being modeled,
for a given set of conditions which we set for that execution.
These conditions may be fixed permanently in the model or
left as free variables or parameters of the model, and set at
runtime. Each set of m input parameters constitutes a single
point in m-dimensional input space. Each solution of the
model produces one set of observations. Such a set of n
values constitutes a single point in the corresponding
n-dimensional observation space. By varying the input
conditions we hope to explore how the outputs vary with
changes to the inputs.

6.1.1. Analytic Techniques
There is a very well developed set of techniques which

can provide exact solutions very quickly, but only for a
very restricted class of models. For more general models it
is often possible to obtain approximate results significantly
more quickly than when using simulation, although the
accuracy of these results may be difficult to determine. The
techniques in question belong to an area of applied
mathematics known as queuing theory, which is a branch of
stochastic modeling [7, 9]. Like simulation, queuing theory
depends on the use of powerful computers in order to solve
its models quickly. We would like to prefer techniques
which yield analytic solutions.

 American Journal of Networks and Communications 2014; 3(5-1): 57-69 63

6.1.2. The Simulation Method
Simulation is the most general and versatile means of

modeling systems for performance estimation. It has many
uses, but its results are usually only approximations to the
exact answer and the price of increased accuracy is much
longer execution times. To reduce the cost of a simulation
we may resort to simplification of the model which avoids
explicit modeling of many features, but this increases the
level of error in the results. If we need to resort to
simplification of our models, it would be desirable to
achieve exact results even though the model might not fully
represent the system. At least then one source of inaccuracy
would be removed. At the same time it would be useful if
the method could produce its results more quickly than
even the simplified simulation. Thus it is important to
consider the use of analytic and numerical techniques
before resorting to simulation. This method is based on the
simulation of the basic characteristics that are the input data
stream and their servicing according the measured and
analyzed probability values simulate the behavior model of
the analyzed parallel system. Its part is therefore the time
registration of the wanted interested discrete values. The
result values of simulation model have always their discrete
character, which do not have the universal form of
mathematical formulas to which we can set when we need
the variables of the used distributions as in the case of
analytical models. The accuracy of simulation model
depends therefore on the accuracy measure of the used
simulation model for the given task.

6.1.3. Asymptotic (Order) Analysis
In the analysis of algorithms, it is often cumbersome or

impossible to derive exact expressions for parameters such
as run time, speedup, efficiency, issoefficiency etc. In many
cases, an approximation of the exact expression is adequate.
The approximation may indeed be more illustrative of the
behavior of the function because it focuses on the critical
factors influencing the parameter. We have used an
extension of this method to evaluate parallel computers and
algorithms in [13, 14].

6.1.4. Experimental Measurement
Evaluating system performance via experimental

measurements is a very useful alternative for parallel
systems and parallel algorithms. Measurements can be
gathered on existing systems by means of benchmark
applications that aim at stressing specific aspects of the
parallel systems and algorithms. Even though benchmarks
can be used in all types of performance studies, their main
field of application is competitive procurement and
performance assessment of existing systems and algorithms.
Parallel benchmarks extend the traditional sequential ones
by providing a wider a wider set of suites that exercise each
system component targeted workload.

6.1.4.1. Benchmark
We divide used performance tests as following
• classical

� Peak performance
� Dhrystone
� Whetstone
� LINPAC
� Khornestone

• problem oriented tests (Benchmarks)
� SPEC tests [37]
� PRISM [23].

6.1.4.2. SPEC Ratio
SPEC (Standard Performance Evaluation Corporation)

defined one number to summarize all needed tests for
integer number. Execution times are at first normalized
through dividing execution time by value of reference
processor (chosen by SPEC) with execution time on
measured computer (user application program). The
achieved ratio is labeled as SPEC ratio, which has such
advantage that higher numerical numbers represent higher
performance, that means that SPEC ratio is an inversion of
execution time. INT 20xx (xx means year of latest version)
or CFP 20xx result value is produced as geometric average
value of all SPEC ratios. The relation for geometric average
value is given as

∏
=

n

i
itimeexecutionnormalisedn

1

, where normalized execution time is the execution time
normalized by reference computer for i – th tested program
from whole tested group n (all tests) and

.
1

i

n

i
i

aindividualofproducta −∏
=

7. Application of Queuing Theory
Systems

The basic premise behind the use of queuing models for
computer systems analysis is that the components of a
computer system can be represented by a network of
servers (or resources) and waiting lines (queues). A server
is defined as an entity that can affect, or even stop, the flow
of jobs through the system. In a computer system, a server
may be the CPU, I/O channel, memory, or a
communication port. Awaiting line is just that: a place
where jobs queue for service. To make a queuing model
work, jobs (or customers or message packets or anything
else that requires the sort of processing provided by the
server) are inserted into the network. A simple example, the
single server model, is shown in Fig. 12. In that system,
jobs arrive at some rate, queue for service on a first-come
first-served basis, receive service, and exit the system. This
kind of model, with jobs entering and leaving the system, is
called an open queuing system model.

We will now turn our attention to some suitable queuing
systems, the notation used to represent them, the
performance quantities of interest, and the methods for
calculating them. We have already introduced many
notations for the quantities of interest for random variables

64 Peter Hanuliak and Michal Hanuliak: Modeling of Single Computing Nodes of Parallel Computers

and stochastic processes.

7.1. Kendall Classification

Queuing theory systems are classified according to
various characteristics, which are often summarized using
Kendall`s notation [16, 28]. In addition to the notation
described previously for the quantities associated with
queuing systems, it is also useful to introduce a notation for
the parameters of a queuing system. The notation we will
use here is known as the Kendall notation in its extended
form as

A/B/m/K/L/Z where
• A means arrival process definition
• B means service time distributions
• m is number of identical servers
• K means maximum number of customers allowed in

the system (default = ∞)
• L is number of customers allowed to arrive (default =
∞)

• Z means discipline used to order customers in the
queue (default = FIFO).

Three symbols used in a Kendall notation description
also have some standard definitions. The more common
designators for the A and B fields are as following

• M means Markovian (exponential) service time or
arrival rate

• D defines deterministic (constant) service time or
arrival rate

• G means general service time or arrival rate.
The service discipline used to order customers in the

queue can be any of a variety of types, such as first-in
first-out (FIFO), last in first out (LIFO), priority ordered,
random ordered, and others. Next, we will apply several
suitable queuing systems to model computer systems or
workstations and give expressions for the more important
performance quantities. We will suppose in Kendall
notation default values that means we will use typical short
Kendall notation.

7.2. Little's Laws

One of the most important results in queuing theory is
Little's law. This was a long standing rule of thumb in
analyzing queuing systems, but gets its name from the
author of the first paper which proves the relationship
formally. It is applicable to the behavior of almost any
system of queues, as long as they exhibit steady state
behavior. It relates a system oriented measure - the mean
number of customers in the system - to a customer oriented
measure - the mean time spent in the system by each
customer (the mean end-to-end time), for a given arrival
rate. Little's law says

E (q) = λ . E (tq)
or it’s following alternatives
• E (w) = λ . E (tw)
• E (w) = E (q) – ρ (single service where m=1)
• E (w) = E (q) – m .ρ (m – services).

We can use also following valid equation
E (tq) = E (tw) + E (ts).
where the named parameters are as
• λ - arrival rate at entrance to a queue
• m - number of identical servers in the queuing system
• ρ - traffic intensity (dimensionless coefficient of

utilization)
• q - random variable for the number of customers in a

system at steady state
• w - random variable for the number of customers in a

queue at steady state
• E(ts) - the expected (mean) service time of a server
• E(q) - the expected (mean) number of customers in a

system at steady state
• E(w) - the expected (mean) number of customers in a

 queue at steady state
• E(tq) - the expected (mean) time spent in system

(queue + servicing) at steady state
• E(tw) - the expected (mean) time spent in the queue at

steady state.

7.3. The M/M/1 Queue Model

To model a single workstation as single PC computer we
give results needed results for M/M/1. There are many
other kinds of queues, including those where FIFO strategy
(First In First Out) is not assumed, but few yield easily
usable analytic results. The M/M/1 queuing system is
characterized by a Poisson arrival process and exponential
service time distributions, with one server, and a FIFO
queue ordering discipline. The system at Fig. 12 represents
an input buffer holding incoming data bytes, with an I/O
processor as the server. A few of the quantities that we will
be interested in for this type of queuing system are the
average queue length, the wait time for a customer in the
queue, the total time a customer spends in the system, and
the server utilization.

Figure 12. Queuing theory based model.

7.3.1. Poisson Distribution
The Poisson distribution models a set of totally

independent events as a process, where each event is
independent of all others. It is not the same as a uniform
distribution. Where knowledge of past events does not
allow us to predict anything about future ones, except that
we know the overall average, the Poisson distribution
represents the likelihood of one of a given range of
numbers of events occurring within the next time interval.
The definition of Poisson distribution is according
following relation

λλ −= e
i

p
i

i !

 American Journal of Networks and Communications 2014; 3(5-1): 57-69 65

, where the parameter λ is defines as the average number
of successes during the interval.

7.3.2. Exponential distribution
If the Poisson distribution represents the likely number

of independent events to occur in the next time period, the
exponential distribution is its converse. It represents the
distribution of inter - arrival times for the same arrival
process. Its mean is inter - event time, but it is often
expressed in terms of the arrival rate, which is 1/inter -
arrival time.

Figure 13. Graphic illustration of exponential distribution.

Exponential distribution function (Fig. 13) is defined as
t

i ep µµ −= for t > 0 and f (t) = 0 for t ≤ 0.

and its mean value as
E (S) = E (ts) = 1/µ.
The Poisson distribution models a set of totally

independent events as a process, where each event is
independent of all others. It is not the same as a uniform
distribution. Where knowledge of past events does not
allow us to predict anything about future ones, except that
we know the overall average, the Poisson distribution
represents the likelihood of one of a given range of
numbers of events occurring within the next time interval.

7.3.3. The Derived Relation of M/M/1 Queue Model
We consider at first the M/M/1queue model. This

represents a Poisson stream of independent arrivals into a
queue whose single server has exponentially distributed
service times. The queue is assumed to be unbounded and
the population of potential customers to be infinite. Let λ be
the (mean) rate of arrivals and µ be the (mean) rate of
service (Fig. 14.).

Figure 14. M/M/1 queuing system model.

We derive a measure called traffic intensity, ρ as

ρ =
µ
λ

From this we can see that the mean and variance of the

number of customers in the queue are

)-(1
)(

ρ
ρ=wE

It also turns out that the end- to end delay (waiting time
plus time being served) for each customer is exponentially
distributed with parameter µ - λ. Thus the mean end to end
delay is

)(

1
)()(

λµ −
== qVarqE

Using Little's law we can get the end to end delay
(waiting time plus time being served) for each

customer which is exponentially distributed with
parameter µ - λ. Thus the mean end- to end delay is as

λµ
ρ
−

=)(wtE

and waiting time in the queue as

λµ −
= 1

)(qtE

7.3.4. M/M/m Queue Model
The illustration of M/M/m model for m=3 is at Fig. 15.

Figure 15. M/M/m (m=3) model of multiprocessor or multicore systems.

The basic needed derived relations for M/M/m queue
model are following

1
.

<=
mµ

λρ

Average number of customer in the queue

() 021!

)(
)(p

m

m
wE

m

ρ
ρρ
−

=

where the probability

() () 1
1

0
0 1

1

!!

−
−

=









−
+= ∑ ρ

ρρm

i

mi

m

m

i

m
p

Average number of customer in the system is given as
ρmwEqE +=)()(

The further parameters E(tq) and E(tw) we can derive
using the Little´s law.

7.4. Non Markovian models

7.4.1. M/D/1 Queue Model
In this queue model traffic intensity ρ is as

1<=
µ
λρ

The service time is constant and is given as

66 Peter Hanuliak and Michal Hanuliak: Modeling of Single Computing Nodes of Parallel Computers

µ
1

)(=stE

Then we can derive that the mean number of customers
in the queue are

)1(2
)(

2

ρ
ρ

−
=wE

and the mean number of customers in the system is

)1(2
)2(

)(
ρ
ρρ

−
−=qE

The waiting time in the queue for each customer is

)1(2
23

)(
ρµ

ρ
−

−=wtE

and the end- to end delay (waiting time plus time being
served) for each customer is

)1(2
)(

ρµ
ρ

−
=qtE

7.4.2. M/D/m queue model
In this queue model traffic intensity ρ is as

1
.

<=
mµ

λρ

The service time is constant and is given as

µ
1

)(=stE

Then we can use for the mean number of customers in
the queue following approximate relation

[]
[]
[] []












⋅

−
−⋅−+

=

mMMtE
MMtE

DMtE

m

m
m

mDMtE

w
w

w

i
i

w

//)(
1//)(

1//)(

16

245
)1()1(1

//)(

ρ
ρ

ɺ

Average number of customer in the system is given as
ρmwEqE +=)()(

The further parameters E(tq) and E(tw) we can derive
using the Little´s law.

8. Results
8.1. Application of THO Models

We have modeled single processor system as M/M/1 and
multiprocessor system as M/M/m and M/D/m queuing
models (two processor system as M/M/2 resp. M/D/2, four
processor system as M/M/4 resp. M/D/4 etc.), where we
were supposed parallel activity of used independent
processors or cores. The differences between
multiprocessor or multicore are in their performance (input
parameters). Therefore we can model booth system with the
same queuing theory system with appropriate input
parameters. The individual result parameters are as follows

Input parameters
• λ - arrival rate at entrance to a queue
• ρ - traffic intensity
• m- number of identical servers in the queuing system.

Output parameters
• E(q) is the expected (mean) number of entities in a

system
• E(w) is the expected (mean) number of entities in a

queue
• E(tq) is the mean time spent in system (queue +

servicing)
• E(tw) is the mean time spent in the queue
• E(ts) is the mean time of servicing.
Table 1 contains all the needed mean values of M/M/4

queuing system. The input parameter is ρ as input load. To
compute the results we used concrete value of input
intensity λ=3 and ρ = λ . E(ts) / 4 as input load intensity of
four service equipment.

Table 1. Results for modeled 4 – multiprocessor system (λ=3)

Ρ E(w) [MIPS] E(q) [MIPS] E(tw) [s] E(tq) [s] E(ts) [s]

0,1 0,000 0,400 0,000 0,133 0,133

0,2 0,002 0,802 0,001 0,267 0,267

0,3 0,016 1,216 0,005 0,405 0,400

0,4 0,060 1,660 0,020 0,553 0,533

0,5 0,174 2,174 0,058 0,725 0,667

0,6 0,431 2,831 0,144 0,944 0,800

0,7 1,000 3,800 0,333 1,267 0,933

0,8 2,386 5,586 0,795 1,862 1,067

0,9 7,090 10,690 2,363 3,563 1,200

Graphics illustration of results from Tab. 1 for modeled 4

– multiprocessor system (λ=3, ρ = λ . E(ts) / 4) are at Fig.
16, where x - axis contains values of parameter ρ (range of
input load) and y - axis individual processing times per
second.

Figure 16. Illustration of modeling 4 – multiprocessor system (λ=3).

Graphic illustration at Fig. 17 illustrates average waiting
times spent in system (queue + servicing) E(tq) of M/M/m
queuing model (M/M/1, M/M/2, M/M/4) (λ=3, ρ = λ. E(ts) /
m) for various number of services m, where x - axis

0

2

4

6

8

10

12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E(w)

E(q)

E(tw)

E(tq)

E(ts)

 American Journal of Networks and Communications 2014; 3(5-1): 57-69 67

contains values of parameter ρ (traffic intensity) and y -
axis individual processing times per second.

Figure 17. Mean time in system T= E(tq).

Table 2. Results for M/D/4 (λ=3, 4 – multiprocessor system)

ρ
E(w)

[MIPS]
E(q)

[MIPS]
E(tw) [s] E(tq) [s] E(ts) [s]

0,1 2,99 3,39 1,00 1,13 0,13

0,2 2,93 3,73 0,98 1,24 0,27

0,3 2,85 4,05 0,95 1,35 0,40

0,4 2,81 4,41 0,94 1,47 0,53

0,5 2,81 4,81 0,94 1,60 0,67

0,6 2,90 5,30 0,97 1,77 0,80

0,7 3,07 5,87 1,02 1,96 0,93

0,8 3,32 6,52 1,11 2,17 1,07

0,9 3,66 7,26 1,22 2,42 1,20

 Graphics illustration of some results from Tab. 2 for
modeled 4 – multiprocessor system (λ=3, ρ = λ .E(ts) / 4)
are at Fig. 18., where x - axis contain values of parameter ρ
(range of traffic intensity) and y - axis contain individual
processing and waiting times per second.

Figure 18. Illustration of some values E(tw), E(tq), E(ts) for M/D/4 system.

Graphics illustration at Fig. 19 compare various queuing
models (M/D/4, M/M/4) (λ=3, ρ = λ .E(ts) / 4) for average
time in system (queue + servicing), where x - axis contains
values of parameter ρ (input load) and y - axis individual

processing times per second. From this comparison we can
better results namely for higher values of traffic intensity
parameter ρ.

Figure 19. Average waiting time in system (λ=3, T= E(tq).

8.2. Spec test ratio

We have been performed various tests (benchmarks) to
verify derived analytical results. We illustrate some
achieved results using Spec test ratio to compare
performance of following processors

• AMD Athlon X2 6000+
• Intel Core2Duo E7300
• Intel i7-950.

Tab. 3 illustrates tested results for processor Intel i7-950

and at the same time description of used SPEC tests to
evaluating performance. As we can see the used tests are
really from various applications in order to come to more
universal tested results.

Table 3. Illustration of tested results for processor Intel i7-950

Description Name
Execution

time [s]
SPEC
ratio

String processing Perl 445 21,9
Compression bzip2 554 17,4
GNU C compiler Gcc 321 25,1
Combinatorial optimization Mcf 202 45,1
Artificial Intelligence Go 460 22,8
Search gene sequence Hmmer 516 18,1
Chess game (AI) Sjeng 507 29,3
Quantum computer simulation Libquantum 97,7 212
Video compression h264avc 605 36,6
Discrete event simulation
library

Omnetpp 269 23,3

Games/path finding Astar 414 16,9
XML Processing Xalancbmk 240 28,7
Geometric mean 29,1

To compare any computers using SPEC ratios test we

prefer to use geometric mean value therefore it defines the
same relative value regardless of used normalized reference
computer. If we were evaluating normalized values using
arithmetic mean value results would be depended from the

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 0.2 0.4 0.6 0.8 1

T[s]

ρ

M/M/1

M/M/2

M/M/4

0

1

1

2

2

3

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T[s]

ρ

E(tw)

E(tq)

E(ts)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 0.2 0.4 0.6 0.8 1

T[s]

ρ

M/D/4

M/M/4

68 Peter Hanuliak and Michal Hanuliak: Modeling of Single Computing Nodes of Parallel Computers

type of used normalized computer. Graphical illustration of
our tested computers is at Fig. 20 using standardized
performance tests of SPEC consortium. According our
expectations processor Intel i7-950 achieved the highest
SPEC ratio value.

0

5

10

15

20

25

30
AMD Athlon X2

Intel C2D E7300

Intel i7

Figure 20. Comparison of tested processors.

9. Conclusions
Performance evaluation of computers generally used to

be a very hard problem from birthday of computers. It was
very hard to apply analytical methods based on queuing
theory results to performance evaluation of sequential
computers because of their high number of not predictable
parameters. Secondly increasing of computer performance
was done at first through technology improvements and
processor’s architecture changes.

From a point of user application of any analytical
method (queuing theory, order analyze) is to be preferred in
comparison with other possible methods because of
transparent using of achieved results. Application of
simulation method or Petri nets does not have such
universal character as discussed analytical methods.
Actually dominant using of multiprocessor or multicore
computers opens more possibilities to apply a queuing
theory results to their performance evaluation. This is based
on a knowledge that outputs from more than one processor
better approximate assumed Poisson distribution. Further
the outputs from any computing node are going to another
computing node in dominant parallel computers (NOW,
Grid, meta computer). In relation to it we began to apply
results of queuing theory to at first single computing node
of parallel computer and then to dominant parallel
computers based on NOW and their high integrated Grid
(virtual parallel computer). To solve such coupled network
of computing nodes appoints to couple network of queuing
theory systems. We refer to it in another paper of this
Special Issue [11]. The achieved results we can apply to
performance modeling of multiprocessors or multicores)
using as input parameter ρ = λ .E(ts) / m (for m=1 we can
model computing node with one processor) as follows

• running of unbalanced parallel processes where λ is a
parameter for incoming parallel processes with their

exponential service time distribution as E(ts) = 1/µ
(M/M/m model). In case of balanced parallel
processes we could use the results as upper limits of
exanimate parameters

• running of parallel processes (λ parameter for
incoming parallel processes with their deterministic
service time E(ts) = 1/µ = constant). The same
deterministic servicing time is a very good
approximation for all optimal balanced parallel
processes (M/D/m model)

• in case of using M/D/m model we can consider λ
parameter also for incoming computer instructions
with their average service time for instruction ti,
where E(ts) = 1/µ = ti = constant.

To consider incoming instructions at using M/M/m
system it would be necessary to recalculate at entrance
incoming parallel processes to instructions. To verify and to
precise used analytical models we have been used SPEC
ratio tests results (mean values of execution times for
applied tests). To get comparable results we used the
relation between throughput and execution time (latency)
as

Latency
Throughput

1= .

To model single computing nodes we can also use other
more complicated single queuing theory systems than the
analyzed ones (M/M/1, M/M/m, M/D/1, and M/D/m). We
have choose the analyzed models from these causes

• to finish performance analysis of networks of queuing
theory system we need results of chosen single
queuing theory systems M/M/m and M/D/m

• we need their results to compute approximation
relation for M/D/m

• M/M/1 and M/M/m models could be used to compare
their results with other models M/D/1 and M/D/m
respectively

• results of analyzed models M/M/m and M/D/m are
necessary to finish coupled network of computing
nodes [12].

Now according current trends in virtual parallel
computers (SMP, NOW, Grid), based of powerful personal
computers, we are looking for unified flexible models of
any parallel computer that will be incorporated influences
of

• other queue ordering discipline than FIFO
• various routing strategies
• various decomposition models etc.
In such flexible models we would like to study load

balancing, inter process communication (IPC), transport
protocols, performance prediction etc. We would refer to
achieved results later.

Acknowledgements
This work was done within the project “Modeling,

optimization and prediction of parallel computers and
algorithms” at University of Zilina, Slovakia. The author

 American Journal of Networks and Communications 2014; 3(5-1): 57-69 69

gratefully acknowledges help of project supervisor Prof. Ing.
Ivan Hanuliak, PhD.

References
[1] Abderazek A. B., Multicore systems on chip - Practical

Software/Hardware design, Imperial college press, pp. 200,
2010

[2] Arora S., Barak B., Computational complexity - A modern
Approach, Cambridge University Press, pp. 573, 2009

[3] Coulouris G., Dollimore J., Kindberg T., Distributed
Systems – Concepts and Design (5 - th Edition), Addison
Wesley, United Kingdom, pp. 800, 2011

[4] Dattatreya G. R., Performance analysis of queuing and
computer network, University of Texas, Dallas, USA, pp.
472, 2008

[5] Dubois M., Annavaram M., Stenstrom P., Parallel Computer
Organization and Design, Cambridge university press,
United Kingdom, pp. 560, 2012

[6] Dubhash D.P., Panconesi A., Concentration of measure for
the analysis of randomized algorithms, Cambridge
University Press, United Kingdom, 2009

[7] Gautam Natarajan, Analysis of Queues: Methods and
Applications, CRC Press, USA, pp. 802, 2012

[8] Gelenbe E., Analysis and synthesis of computer systems,
Imperial College Press, United Kingdom, pp. 324, April
2010

[9] Giambene G., Queuing theory and telecommunications,
Springer, Germany, pp. 585, 2005

[10] Hager G., Wellein G., Introduction to High Performance
Computing for Scientists and Engineers, CRC Press, USA,
pp. 356, 2010

[11] Hanuliak M., Modeling of dominant parallel computers
based on NOW, American J. of Networks and
Communication, Science PG, Vol. 3, USA, 2014

[12] Hanuliak M., Hanuliak P., Performance modeling of parallel
computers NOW and Grid , AJNC (Am. J. of Networks and
Communication), Science PG, USA, pp. 112-124, 2013

[13] Hanuliak J., Modeling of communication complexity in
parallel computing, American J. of Networks and
Communication, Science PG, Vol. 3, USA, 2014

[14] Hanuliak J., Hanuliak I., To performance evaluation of
distributed parallel algorithms, Kybernetes, Volume 34, No.
9/10, United Kingdom, pp. 1633-1650, 2005

[15] HarcholBalterMor, Performance modeling and design of
computer systems, Cambridge University Press, United
Kingdom, pp. 576, 2013

[16] Hillston J., A Compositional Approach to Performance
Modeling, University of Edinburg, Cambridge University
Press, United Kingdom, pp. 172, 2005

[17] Hwang K. and coll., Distributed and Parallel Computing,
Morgan Kaufmann, pp. 472, 2011

[18] John L. K., Eeckhout L., Performance evaluation and
benchmarking, CRC Press, USA, 2005

[19] Kshemkalyani A. D., Singhal M., Distributed Computing,
University of Illinois, Cambridge University Press, United
Kingdom, pp. 756, 2011

[20] Kirk D. B., Hwu W. W., Programming massively parallel
processors, Morgan Kaufmann, USA, pp. 280, 2010

[21] Kostin A., Ilushechkina L., Modeling and simulation of
distributed systems, Imperial College Press,United Kingdom,
pp. 440, 2010

[22] Kushilevitz E., Nissan N., Communication
Complexity,Cambridge University Press, United Kingdom,
pp. 208, 2006

[23] Kwiatkowska M., Norman G., and Parker D., PRISM 4.0:
Verification of Probabilistic Real-time Systems, In Proc.
23rd Int. Conf. on CAV’11, Vol. 6806 of LNCS, Springer,
Germany, pp. 585-591, 2011

[24] Le Boudec Jean-Yves, Performance evaluation of computer
and communication systems, CRC Press, USA, pp. 300,
2011

[25] McCabe J., D., Network analysis, architecture, and design
(3rd edition), Elsevier/Morgan Kaufmann, USA, pp. 496,
2010

[26] Miller S., Probability and Random Processes, 2nd edition,
Academic Press, Elsevier Science, Netherland, pp. 552,
2012

[27] Misra Ch. S., Woungang I., Selected topics in
communication network and distributed systems, Imperial
college press, United Kingdom, pp. 808, April 2010

[28] Natarajan G., Analysis of Queues - Methods and
Applications, CRC Press, USA, pp. 802, 2012

[29] Patterson D. A., Hennessy J. L., Computer Organization and
Design (4th edition), Morgan Kaufmann, USA, pp. 914,
2011

[30] Peterson L. L., Davie B. C., Computer networks – a system
approach, Morgan Kaufmann, USA, pp. 920, 2011

[31] Resch M. M., Supercomputers in Grids, Int. J. of Grid and
HPC, No.1, Germany, pp. 1 - 9, 2009

[32] Riano l., McGinity T.M., Quantifying the role of complexity
in a system’s performance, Evolving Systems, Springer
Verlag, Germany, pp. 189 – 198, 2011

[33] Ross S. M., Introduction to Probability Models, 10th edition,
Academic Press, Elsevier Science, Netherland, pp. 800,
2010

[34] Wang L., Jie Wei., Chen J., Grid Computing: Infrastructure,
Service, and Application, CRC Press, USA, 2009
www pages

[35] www.top500.org

[36] www. intel.com

[37] www.spec.org.

