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Abstract: The paper describes analytical modeling for single computing nodes of parallel computers. At first the paper 
describes very shortly the developing steps of parallel computer architectures and then he summarized the basic concepts for 
performance evaluation. To illustrate theoretical evaluation concepts the paper considers in its experimental part the achieved 
results on concrete analyzed examples and their comparison. The suggested analytical models consider for single computing 
node based on processor or core and SMP modeling of own computer node´s activities and node´s communication channels 
of performed data communications within computing node queuing theory systems M/D/m or M/D/. In case of using SMP 
parallel system as node computer the suggested models consider for own node’s activities M/M/m or M/D/m queuing theory 
systems. Although we are able to use other more complicated queuing theory systems we prefer modeling with mentioned 
models because achieved results for these models we can use in decomposed modeling of coupled computing nodes as 
network of workstations (NOW) or network of massive NOW modules (Grid). The achieved results of the developed 
analytical models we have compared with the results of tested computing nodes with other alternative evaluation method 
based on suitable benchmarks to verify developed analytical models. The developed analytical models could be used under 
various ranges of input analytical parameters, which influence the architecture of analyzed computing nodes which are 
interested for the praxis. 

Keywords: Parallel Computer, Computing Node, Network of Workstation (NOW), Grid, Analytical Modeling,  
Queuing Theory, Performance Evaluation, Queuing Theory System, Benchmark 

 

1. Developing Periods of Parallel 
Computers 

In the first period of parallel computers between 1975 
and 1995 dominated scientific supercomputers, which were 
specially designed for the high performance computing 
(HPC). These parallel computers have been mostly used 
computing models based on data parallelism. Those 
systems were way ahead of standard common computers in 
terms of their performance and price. Increased processor 
performance was caused through massive using of various 
parallel principles in all forms of produced processors. 
Parallel principles were used so in single PC’s and 
workstations (scalar or super scalar pipeline, symmetrical 
multiprocessor systems SMP) [5] so as on extreme 
powerful PC as in various connected network of 
workstations (NOW, cluster). Gained experience with the 
implementation of parallel principles and intensive 

extensions of computer networks, leads to the use of 
connected computers for parallel solution. This period we 
can name as the second developing period. Their large 
growth since 1980 have been stimulated by the 
simultaneous influence of three basic factors [10, 29]  

• high performance processors and computers  
• high speed interconnecting networks   
• standardized tools to development of parallel 

algorithms (OpenMP, MPI, Java). 
Developing trends are actually going toward building of 

wide spread connected NOW networks with high 
computation and memory capacity (Grid). Conceptually 
Grid comes to the definition of meta computer [20], where 
meta computer could be understood as big computer 
network consisting on massive number of computing nodes, 
memories and other needed resources together creating an 
illusion of one single powerful supercomputer. These high 
integrated forms of NOW’s create various Grid systems or 
meta computers we could define as the third period of 
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parallel computers. 

2. Basic Modules of Parallel Computers 
Basic technical components of parallel computers 

illustrate Fig. 1 as follows 
• modules of processors, cores of mix of them  
• modules of computers (Sequential, parallel) 
• memory modules 
• input/output (I/O) modules. 
These modules are connected through intern high speed 

communication networks (within concrete module) and 
extern among used computing modules via high speed 
communication networks [25, 35].  

 
Figure 1. Basic building modules of parallel computers. 

2.1. Classification of Parallel Computer  

It is very difficult to classify all to this time realized 
parallel computers. The basic classification is from the 
point of realized memory as follows 

• parallel computers with shared memory 
(multiprocessors, multicores) 

• parallel computers with distributed memory (mainly 
based on computer networks) 

• others. 

2.1.1. Parallel Computers with Shared Memory  
We can name realized parallel computers with shared 

memory as follows  
• switched system 
• multi bus system 
• vector processor 
• array processor 
• associative processor 
• transputer 
• pipeline system 
• systolic system 
• wave front array system 
• cellular system 
• n-dimension cubes 
• algorithm structured 
• supercomputers 
• connection machines 
• super reliable 
• neural networks. 

2.1.2. Parallel Computers with Distributed Memory  
To this group of parallel computers belong mainly 

parallel computers based on some form of network 
connection as follows  

• localcomputer networks (LAN) 
� network of workstations (NOW) 
� PC farms, clusters 
� others 

• wide area networks (WDN) 
� network of  NOW networks (Grid)| 
� meta computers (Internet) 
� others. 

2.2. Classification from the Point of Programmer   

But from the point of programmer we divide them to the 
two following different groups 

• synchronous parallel architectures. These are used for 
performing the same or very similar process 
(independent part) on different sets of data (data 
parallelism) in active computing nodes of parallel 
system. They are often used under central control that 
means under the global clock synchronization (vector, 
array system etc.) or a distributed local control 
mechanism (systolic systems etc.). This group consists 
mainly of parallel computers (centralized 
supercomputers) with any form of shared memory. 
Shared memory defines typical system features and in 
some cases can in considerable measure reduces 
developing of some parallel algorithms. To this group 
belong actually dominated parallel computers based 
on multiply cores, processors or mix of them and most 
of realized massive parallel computers (classic 
supercomputers) [5, 31]. Basic common 
characteristics are as following 
� shared memory (at least a part of memory)  
� using shared memory for communication 
� supported developing standard OpenMP, 

OpenMP Threads, Java 
• asynchronous parallel computers. They are composed 

of a number of fully independent computing nodes 
(processors, cores or computers) which are connected 
through some communication network. To this group 
belong mainly various forms of computer networks 
(cluster), network of powerful workstation (NOW|) or 
more integrated network of NOW networks (Grid). 
Any cooperation and control are performed through 
inter process communication mechanisms (IPC) per 
realized remote or local communication channels. 
According the latest trends asynchronous parallel 
computers based on PC computers (single, SMP) are 
dominant parallel computers. Basic common 
characteristics are as following [10, 29] 
� no shared memory (distributed memory) 
� computing node could have some form of local 

memory where this memory in use only by 
connected computing node  

� cooperation and control of parallel processes 
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only using asynchronous message  
communication 

� supported developing standard  
o MPI (Message passing interface) 
o PVM (Parallel virtual machine) 
o Java. 

3. Typical Architectures of Modern 
Parallel Computers 

3.1. Symmetrical Multiprocessor System 

Symmetrical multiprocessor system (SMP) is a multiple 
using of the same processors or cores which are 
implemented on motherboard in order to increase the whole 
performance of such system. Typical common 
characteristics are following 

• each processor or core (computing node) of the 
multiprocessor system can access main memory 
(shared memory) 

• I/O channels or I/O devices are allocated to individual 
computing nodes according their demands  

• integrated operation system coordinates cooperation 
of whole multiprocessor resources (hardware, 
software etc.). 

Concept of multiprocessor system illustrates Fig. 2. 
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Figure 2. Single computing node based on SMP (8-processors Intel Xeon). 

3.2. Network of Workstations 

There has been an increasing interest in the use of 
networks of workstations (NOW) connected together by 
high speed networks for solving large computation 
intensive problems. This trend is mainly driven by the cost 
effectiveness of such systems as compared to massive 
multiprocessor systems with tightly coupled processors and 
memories (supercomputers). Parallel computing on a 
network of workstations connected by high speed networks 
has given rise to a range of hardware and network related 

issues on any given platform [3]. With the availability of 
cheap personal computers, workstations and networking 
devises, the recent trend is to connect a number of such 
workstations to solve computation intensive tasks in 
parallel on such clusters. Network of workstations [17, 19] 
has become a widely accepted form of high performance 
computing (HPC). Each workstation in a NOW is treated 
similarly to a processing element in a multiprocessor 
system. However, workstations are far more powerful and 
flexible than processing elements in conventional 
multiprocessors (supercomputers). To exploit the parallel 
processing capability of a NOW, an application algorithm 
must be paralleled. A way how to do it for an application 
problem builds its decomposition strategy. We will refer to 
it in [13].  

Typical example of networks of workstations also for 
solving large computation intensive problems is at Fig. 3. 
The individual workstations are mainly extreme powerful 
personal workstations based on multiprocessor or multicore 
platform [1, 36]. Parallel computing on a cluster of 
workstations connected by high speed networks has given 
rise to a range of hardware and network related issues on 
any given platform.   
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Figure 3. Typical architecture of NOW. 

On such modular parallel computer we have been able to 
study basic problems in parallel computing (parallel and 
distributed computing) as load balancing, inter processor 
communication IPC [22, 32], modeling and optimization of 
parallel algorithms etc. [2, 14]. The coupled computing 
nodes PC1, PC2, ...,PCi (workstations) could be single 
extreme powerful personal computers or SMP parallel 
computers. In this way parallel computing on networks of 
conventional PC workstations (single, multiprocessor, 
multicore) and Internet computing, suggest advantages of 
unifying parallel and distributed computing [30].  
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3.3. Grid Systems 

Grid technologies have attracted a great deal of attention 
recently, and numerous infrastructure and software projects 
have been undertaken to realize various versions of Grids. 
In general Grids represent a new way of managing and 
organizing of computer networks and mainly of their 
deeper resource sharing [34]. Grid systems are expected to 
operate on a wider range of other resources as processors 
(CPU), like storages, data modules, network components, 
software (typical resources) and atypical resources like 
graphical and audio input/output devices, sensors and so 
one (Fig. 4.). All these resources typically exist within 
nodes that are geographically distributed, and span multiple 
administrative domains. The virtual machine is constituted 
of a set of resources taken from a resource pool [34]. It is 
obvious that existed HPC parallel computers 
(supercomputers etc.) could be a member of such Grid 
systems too. In general Grids represent a new way of 
managing and organizing of computer networks and mainly 
of their deeper resource sharing (Fig. 4). 
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Figure 4. Architecture of Grid node. 

Conceptually they go out from a structure of virtual 
parallel computer based on computer networks. In general 
Grids represent a new way of managing and organizing of 
resources like network of NOW networks. This term define 
massive computational Grid with following basic 
characteristics  

• wide area network of integrated free computing 
resources. It is a massive number of inter connected 
networks, which are connected through high speed 
connected networks during which time whole massive 
system is controlled with network operation system, 
which makes an illusion of powerful computer system 
(virtual supercomputer) 

• grants a function of meta computing that means 
computing environment, which enables to individual 
applications a functionality of all system resources  

• Grid system combines distributed parallel 
computation with remote computing from user 
workstations. 

 

3.4. Meta Computing 

This term define massive parallel computer 
(supercomputer, Grid). 

The best example of existingmeta computer is Internet as 
massive international network of various computer 
networks. Fig. 5 illustrates Internet as virtual parallel 
computer from sight of common Internet user. 

 
Figure 5. Internet as virtual parallel computer. 

Another sight to Internet as network of connected 
individual computer networks is at Fig. 6. The typical 
networking switches are bridges, routers, gateways etc. 
which we denote with common term as network processors 
[27]. 

 
Figure 6. Internet as network of connected networks. 
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4. Modeling in Parallel Computing 
Generally model is the abstraction of the system 

according Fig. 7 [15]. The functionality of the model 
represents the level of the abstraction applied. That means, 
if we know all there is about the system and are willing to 
pay for the complexity of building a true model, the role of 
abstraction is near nil. In practical cases we wish to abstract 
the view we take of a system to simplify the complexity of 
the real system. We wish to build a model that focuses on 
some basic elements of our interest and leave the rest of 
real system as only an interface with no details beyond 
proper inputs and outputs. A real system could be any 
parallel process or parallel computer that we are going to 
model [15]. In our cases they should be applied parallel 
algorithms (PA) or concrete parallel computers (SMP, 
NOW, Grid etc.). 

The basic conclusion is that a model is a subjective view 
of modeler’s subjective insight into modeled real system. 
This personal view defines what is important, what the 
purposes are, details, boundaries, and so one. Therefore the 
modeler must understand the system in order to guarantee 
useful features of the created model. 

Real system

Model

Abstraction

 
Figure 7. Modeling process. 

4.1. Model Construction 

Modeling is high creative process which incorporates 
following basic assumptions 

• high ability of abstract thinking 
• brain storming (creativity) 
• alternating behavior and strategy 
• logical hierarchical approaches to differ primary and 

secondary facts. 
In general the development of model in any scientific 

area include the collection of following steps  
• define the problem to be studied as well the criteria 

for analysis 
• define and/or refine the model of the system. This 

include development of abstractions into mathematical, 
logical or procedural relationships 

• collect data input to the model. Define the outside 
world and what must be fed to or taken from the 

model to “simulate” that world 
• select a modeling tool and prepare and augment the 

model for tool implementation 
• verify that the tool implementation is an accurate 

reflection of the model 
• validate that the tool implementation provides the 

desired accuracy or correspondence with the real 
world  system being modeled 

• experiment with the model to obtain performance 
measures 

• analyze the tool results 
• use findings to derive designs and improvements for 

the real world system. 
Corresponding flow diagram of model development 

represents Fig. 8. 
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Figure 8. Flow diagram of model development. 
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Figure 9. Applied computer modeling. 
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To practical illustration we have chosen applied 
modeling of classical sequential von Neumann computer 
according Fig. 9.  

5. Abstract Models of Computing Nodes 
5.1. Abstract model of SMP computing node with shared 

memory 

Basic abstract model of parallel computer with shared 
memory is at Fig. 10.  
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Figure 10. Abstract model of SMP. 

5.2. Abstract Model of SMP with Distributed Memory 

Basic abstract model of parallel computer with 
distributed memory is at Fig. 11.  
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Figure 11. Abstract model of NOW. 

6. The Role of Performance 
Quantitative evaluation and modeling of hardware and 

software components of parallel systems are critical for the 
delivery of high performance. Performance studies apply to 
initial design phases as well as to procurement, tuning and 

capacity planning analysis. As performance cannot be 
expressed by quantities independent of the system 
workload, the quantitative characterization of resource 
demands of application and of their behavior is an 
important part of any performance evaluation study [24, 
33]. Among the goals of parallel systems performance 
analysis are to assess the performance of a system or a 
system component or an application, to investigate the 
match between requirements and system architecture 
characteristics, to identify the features that have a 
significant impact on the application execution time, to 
predict the performance of a particular application on a 
given parallel system, to evaluate different structures of 
parallel applications [26]. 

6.1. Performance Evaluation Methods 

The fundamental concepts have been developed for 
evaluating parallel computers. Trade-offs among these 
performance factors are often encountered in real-life 
applications. To the performance evaluation we can use 
following methods 

• analytical methods 
� application of queuing theory [4, 8,16] 
� asymptotic (order) analysis [13, 14] 

• simulation [21] 
• experimental measurement 

� benchmarks [18] 
� modeling tools [23] 
� direct parameter measuring [6]. 

When we solve a model we can obtain an estimate for a 
set of values of interest within the system being modeled, 
for a given set of conditions which we set for that execution. 
These conditions may be fixed permanently in the model or 
left as free variables or parameters of the model, and set at 
runtime. Each set of m input parameters constitutes a single 
point in m-dimensional input space. Each solution of the 
model produces one set of observations. Such a set of n 
values constitutes a single point in the corresponding 
n-dimensional observation space. By varying the input 
conditions we hope to explore how the outputs vary with 
changes to the inputs. 

6.1.1. Analytic Techniques 
There is a very well developed set of techniques which 

can provide exact solutions very quickly, but only for a 
very restricted class of models. For more general models it 
is often possible to obtain approximate results significantly 
more quickly than when using simulation, although the 
accuracy of these results may be difficult to determine. The 
techniques in question belong to an area of applied 
mathematics known as queuing theory, which is a branch of 
stochastic modeling [7, 9]. Like simulation, queuing theory 
depends on the use of powerful computers in order to solve 
its models quickly. We would like to prefer techniques 
which yield analytic solutions. 
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6.1.2. The Simulation Method 
Simulation is the most general and versatile means of 

modeling systems for performance estimation. It has many 
uses, but its results are usually only approximations to the 
exact answer and the price of increased accuracy is much 
longer execution times. To reduce the cost of a simulation 
we may resort to simplification of the model which avoids 
explicit modeling of many features, but this increases the 
level of error in the results. If we need to resort to 
simplification of our models, it would be desirable to 
achieve exact results even though the model might not fully 
represent the system. At least then one source of inaccuracy 
would be removed. At the same time it would be useful if 
the method could produce its results more quickly than 
even the simplified simulation. Thus it is important to 
consider the use of analytic and numerical techniques 
before resorting to simulation. This method is based on the 
simulation of the basic characteristics that are the input data 
stream and their servicing according the measured and 
analyzed probability values simulate the behavior model of 
the analyzed parallel system. Its part is therefore the time 
registration of the wanted interested discrete values. The 
result values of simulation model have always their discrete 
character, which do not have the universal form of 
mathematical formulas to which we can set when we need 
the variables of the used distributions as in the case of 
analytical models. The accuracy of simulation model 
depends therefore on the accuracy measure of the used 
simulation model for the given task. 

6.1.3. Asymptotic (Order) Analysis 
In the analysis of algorithms, it is often cumbersome or 

impossible to derive exact expressions for parameters such 
as run time, speedup, efficiency, issoefficiency etc. In many 
cases, an approximation of the exact expression is adequate. 
The approximation may indeed be more illustrative of the 
behavior of the function because it focuses on the critical 
factors influencing the parameter. We have used an 
extension of this method to evaluate parallel computers and 
algorithms in [13, 14]. 

6.1.4. Experimental Measurement 
Evaluating system performance via experimental 

measurements is a very useful alternative for parallel 
systems and parallel algorithms. Measurements can be 
gathered on existing systems by means of benchmark 
applications that aim at stressing specific aspects of the 
parallel systems and algorithms. Even though benchmarks 
can be used in all types of performance studies, their main 
field of application is competitive procurement and 
performance assessment of existing systems and algorithms. 
Parallel benchmarks extend the traditional sequential ones 
by providing a wider a wider set of suites that exercise each 
system component targeted workload. 

6.1.4.1. Benchmark 
We divide used performance tests as following 
• classical 

� Peak performance  
� Dhrystone 
� Whetstone 
� LINPAC 
� Khornestone 

• problem oriented tests (Benchmarks) 
� SPEC tests [37] 
� PRISM [23]. 

6.1.4.2. SPEC Ratio 
SPEC (Standard Performance Evaluation Corporation) 

defined one number to summarize all needed tests for 
integer number. Execution times are at first normalized 
through dividing execution time by value of reference 
processor (chosen by SPEC) with execution time on 
measured computer (user application program). The 
achieved ratio is labeled as SPEC ratio, which has such 
advantage that higher numerical numbers represent higher 
performance, that means that SPEC ratio is an inversion of 
execution time. INT 20xx (xx means year of latest version) 
or CFP 20xx result value is produced as geometric average 
value of all SPEC ratios. The relation for geometric average 
value is given as        

∏
=

n

i
itimeexecutionnormalisedn

1

 

, where normalized execution time is the execution time 
normalized by reference computer for i – th tested program 
from whole tested group n (all tests) and 

.
1

i

n

i
i

aindividualofproducta −∏
=

 

7. Application of Queuing Theory 
Systems   

The basic premise behind the use of queuing models for 
computer systems analysis is that the components of a 
computer system can be represented by a network of 
servers (or resources) and waiting lines (queues). A server 
is defined as an entity that can affect, or even stop, the flow 
of jobs through the system. In a computer system, a server 
may be the CPU, I/O channel, memory, or a 
communication port. Awaiting line is just that: a place 
where jobs queue for service. To make a queuing model 
work, jobs (or customers or message packets or anything 
else that requires the sort of processing provided by the 
server) are inserted into the network. A simple example, the 
single server model, is shown in Fig. 12. In that system, 
jobs arrive at some rate, queue for service on a first-come 
first-served basis, receive service, and exit the system. This 
kind of model, with jobs entering and leaving the system, is 
called an open queuing system model. 

We will now turn our attention to some suitable queuing 
systems, the notation used to represent them, the 
performance quantities of interest, and the methods for 
calculating them. We have already introduced many 
notations for the quantities of interest for random variables 
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and stochastic processes. 

7.1. Kendall Classification 

Queuing theory systems are classified according to 
various characteristics, which are often summarized using 
Kendall`s notation [16, 28]. In addition to the notation 
described previously for the quantities associated with 
queuing systems, it is also useful to introduce a notation for 
the parameters of a queuing system. The notation we will 
use here is known as the Kendall notation in its extended 
form as 

A/B/m/K/L/Z where 
• A means arrival process definition 
• B means service time distributions 
• m is number of identical servers 
• K means maximum number of customers allowed in 

the system (default = ∞) 
• L is number of customers allowed to arrive (default = 
∞) 

• Z means discipline used to order customers in the 
queue (default = FIFO). 

Three symbols used in a Kendall notation description 
also have some standard definitions. The more common 
designators for the A and B fields are as following  

• M means Markovian (exponential) service time or 
arrival rate 

• D defines deterministic (constant) service time or 
arrival rate 

• G means general service time or arrival rate. 
The service discipline used to order customers in the 

queue can be any of a variety of types, such as first-in 
first-out (FIFO), last in first out (LIFO), priority ordered, 
random ordered, and others. Next, we will apply several 
suitable queuing systems to model computer systems or 
workstations and give expressions for the more important 
performance quantities. We will suppose in Kendall 
notation default values that means we will use typical short 
Kendall notation. 

7.2. Little's Laws 

One of the most important results in queuing theory is 
Little's law. This was a long standing rule of thumb in 
analyzing queuing systems, but gets its name from the 
author of the first paper which proves the relationship 
formally. It is applicable to the behavior of almost any 
system of queues, as long as they exhibit steady state 
behavior. It relates a system oriented measure - the mean 
number of customers in the system - to a customer oriented 
measure - the mean time spent in the system by each 
customer (the mean end-to-end time), for a given arrival 
rate. Little's law says 

E (q) = λ . E (tq) 
or it’s following alternatives 
• E (w) = λ . E (tw) 
• E (w) = E (q) – ρ (single service where m=1) 
• E (w) = E (q) – m .ρ (m – services). 

We can use also following valid equation 
E (tq) = E (tw) + E (ts). 
where the named parameters are as 
• λ - arrival rate at entrance to a queue 
• m - number of identical servers in the queuing system 
• ρ - traffic intensity (dimensionless coefficient of 

utilization) 
• q - random variable for the number of customers in a 

system at steady state 
• w - random variable for the number of customers in a 

queue at steady state 
• E(ts) - the expected (mean) service time of a server 
• E(q) - the expected (mean) number of customers in a 

system at steady state 
• E(w) - the expected (mean) number of customers in a 

 queue at steady state 
• E(tq) - the expected (mean) time spent in system 

(queue + servicing) at steady state 
• E(tw) - the expected (mean) time spent in the queue at 

steady state. 

7.3. The M/M/1 Queue Model 

To model a single workstation as single PC computer we 
give results needed results for M/M/1. There are many 
other kinds of queues, including those where FIFO strategy 
(First In First Out) is not assumed, but few yield easily 
usable analytic results. The M/M/1 queuing system is 
characterized by a Poisson arrival process and exponential 
service time distributions, with one server, and a FIFO 
queue ordering discipline. The system at Fig. 12 represents 
an input buffer holding incoming data bytes, with an I/O 
processor as the server. A few of the quantities that we will 
be interested in for this type of queuing system are the 
average queue length, the wait time for a customer in the 
queue, the total time a customer spends in the system, and 
the server utilization. 

 
Figure 12. Queuing theory based model. 

7.3.1. Poisson Distribution 
The Poisson distribution models a set of totally 

independent events as a process, where each event is 
independent of all others. It is not the same as a uniform 
distribution. Where knowledge of past events does not 
allow us to predict anything about future ones, except that 
we know the overall average, the Poisson distribution 
represents the likelihood of one of a given range of 
numbers of events occurring within the next time interval. 
The definition of Poisson distribution is according 
following relation 

λλ −= e
i

p
i

i !
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, where the parameter λ is defines as the average number 
of successes during the interval. 

7.3.2. Exponential distribution 
If the Poisson distribution represents the likely number 

of independent events to occur in the next time period, the 
exponential distribution is its converse. It represents the 
distribution of inter - arrival times for the same arrival 
process. Its mean is inter - event time, but it is often 
expressed in terms of the arrival rate, which is 1/inter - 
arrival time. 

 
Figure 13. Graphic illustration of exponential distribution. 

Exponential distribution function (Fig. 13) is defined as
t

i ep µµ −= for t > 0 and f (t) = 0 for t ≤ 0. 

and its mean value as               
E (S) = E (ts) = 1/µ. 
The Poisson distribution models a set of totally 

independent events as a process, where each event is 
independent of all others. It is not the same as a uniform 
distribution. Where knowledge of past events does not 
allow us to predict anything about future ones, except that 
we know the overall average, the Poisson distribution 
represents the likelihood of one of a given range of 
numbers of events occurring within the next time interval. 

7.3.3. The Derived Relation of M/M/1 Queue Model 
We consider at first the M/M/1queue model. This 

represents a Poisson stream of independent arrivals into a 
queue whose single server has exponentially distributed 
service times. The queue is assumed to be unbounded and 
the population of potential customers to be infinite. Let λ be 
the (mean) rate of arrivals and µ be the (mean) rate of 
service (Fig. 14.). 

 
Figure 14. M/M/1 queuing system model. 

We derive a measure called traffic intensity, ρ as 

ρ =
µ
λ

 
From this we can see that the mean and variance of the 

number of customers in the queue are 

)-(1
)(

ρ
ρ=wE  

It also turns out that the end- to end delay (waiting time 
plus time being served) for each customer is exponentially 
distributed with parameter µ - λ. Thus the mean end to end 
delay is 

)(

1
)()(

λµ −
== qVarqE  

Using Little's law we can get the end to end delay 
(waiting time plus time being served) for each  

customer which is exponentially distributed with 
parameter µ - λ. Thus the mean end- to end delay is as 

λµ
ρ
−

=)( wtE  

and waiting time in the queue as 

λµ −
= 1

)( qtE  

7.3.4. M/M/m Queue Model 
The illustration of M/M/m model for m=3 is at Fig. 15.  

 
Figure 15. M/M/m (m=3) model of multiprocessor or multicore systems. 

The basic needed derived relations for M/M/m queue 
model are following 
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Average number of customer in the system is given as 
ρmwEqE += )()(   

The further parameters E(tq) and E(tw) we can derive 
using the Little´s law. 

7.4. Non Markovian models 

7.4.1. M/D/1 Queue Model    
In this queue model traffic intensity ρ is as 

1<=
µ
λρ  

The service time is constant and is given as 
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µ
1

)( =stE  

Then we can derive that the mean number of customers 
in the queue are 

)1(2
)(

2

ρ
ρ

−
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and the mean number of customers in the system is 
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)(
ρ
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−
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The waiting time in the queue for each customer is 
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ρ
−
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and the end- to end delay (waiting time plus time being 
served) for each customer is 

)1(2
)(

ρµ
ρ

−
=qtE  

7.4.2. M/D/m queue model 
In this queue model traffic intensity ρ is as 

1
.

<=
mµ

λρ   

The service time is constant and is given as 

µ
1

)( =stE  

Then we can use for the mean number of customers in 
the queue following approximate relation 
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Average number of customer in the system is given as 
ρmwEqE += )()(  

The further parameters E(tq) and E(tw) we can derive 
using the Little´s law. 

8. Results 
8.1. Application of THO Models 

We have modeled single processor system as M/M/1 and 
multiprocessor system as M/M/m and M/D/m queuing 
models (two processor system as M/M/2 resp. M/D/2, four 
processor system as M/M/4 resp. M/D/4 etc.), where we 
were supposed parallel activity of used independent 
processors or cores. The differences between 
multiprocessor or multicore are in their performance (input 
parameters). Therefore we can model booth system with the 
same queuing theory system with appropriate input 
parameters. The individual result parameters are as follows 

Input parameters 
• λ - arrival rate at entrance to a queue 
• ρ - traffic intensity  
• m- number of identical servers in the queuing system. 

 
Output parameters 
• E(q) is the expected (mean) number of entities in a 

system 
• E(w) is the expected (mean) number of entities in a 

queue 
• E(tq) is the mean time spent in system (queue + 

servicing) 
• E(tw) is the mean time spent in the queue 
• E(ts) is the mean time of servicing. 
Table 1 contains all the needed mean values of M/M/4 

queuing system. The input parameter is ρ as input load. To 
compute the results we used concrete value of input 
intensity λ=3 and ρ = λ . E(ts) / 4 as input load intensity of 
four service equipment. 

Table 1. Results for modeled 4 – multiprocessor system (λ=3) 

Ρ E(w) [MIPS] E(q) [MIPS] E(tw) [s] E(tq) [s] E(ts) [s] 

0,1 0,000 0,400 0,000 0,133 0,133 

0,2 0,002 0,802 0,001 0,267 0,267 

0,3 0,016 1,216 0,005 0,405 0,400 

0,4 0,060 1,660 0,020 0,553 0,533 

0,5 0,174 2,174 0,058 0,725 0,667 

0,6 0,431 2,831 0,144 0,944 0,800 

0,7 1,000 3,800 0,333 1,267 0,933 

0,8 2,386 5,586 0,795 1,862 1,067 

0,9 7,090 10,690 2,363 3,563 1,200 

 
Graphics illustration of results from Tab. 1 for modeled 4 

– multiprocessor system (λ=3, ρ = λ . E(ts) / 4) are at Fig. 
16, where x - axis contains values of parameter ρ (range of 
input load) and y - axis individual processing times per 
second. 

 
Figure 16. Illustration of modeling 4 – multiprocessor system (λ=3). 

Graphic illustration at Fig. 17 illustrates average waiting 
times spent in system (queue + servicing) E(tq) of M/M/m 
queuing model (M/M/1, M/M/2, M/M/4) (λ=3, ρ = λ. E(ts) / 
m) for various number of services m, where x - axis 
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contains values of parameter ρ (traffic intensity) and y - 
axis individual processing times per second.  

 
Figure 17. Mean time in system T= E(tq). 

Table 2. Results for M/D/4 (λ=3, 4 – multiprocessor system) 

ρ 
E(w) 

[MIPS] 
E(q) 

[MIPS] 
E(tw) [s] E(tq) [s] E(ts) [s] 

0,1 2,99 3,39 1,00 1,13 0,13 

0,2 2,93 3,73 0,98 1,24 0,27 

0,3 2,85 4,05 0,95 1,35 0,40 

0,4 2,81 4,41 0,94 1,47 0,53 

0,5 2,81 4,81 0,94 1,60 0,67 

0,6 2,90 5,30 0,97 1,77 0,80 

0,7 3,07 5,87 1,02 1,96 0,93 

0,8 3,32 6,52 1,11 2,17 1,07 

0,9 3,66 7,26 1,22 2,42 1,20 

 
 Graphics illustration of some results from Tab. 2 for 
modeled 4 – multiprocessor system (λ=3, ρ = λ .E(ts) / 4) 
are at Fig. 18., where x - axis contain values of parameter ρ 
(range of traffic intensity) and y - axis contain individual 
processing and waiting times per second.  

 
Figure 18. Illustration of some values E(tw), E(tq), E(ts) for M/D/4 system. 

Graphics illustration at Fig. 19 compare various queuing 
models (M/D/4, M/M/4) (λ=3, ρ = λ .E(ts) / 4) for average 
time in system (queue + servicing), where x - axis contains 
values of parameter ρ (input load) and y - axis individual 

processing times per second. From this comparison we can 
better results namely for higher values of traffic intensity 
parameter ρ. 

 
Figure 19. Average waiting time in system (λ=3, T= E(tq). 

8.2. Spec test ratio 

We have been performed various tests (benchmarks) to 
verify derived analytical results. We illustrate some 
achieved results using Spec test ratio to compare 
performance of following processors 

• AMD Athlon X2 6000+ 
• Intel Core2Duo E7300 
• Intel i7-950. 

 
Tab. 3 illustrates tested results for processor Intel i7-950 

and at the same time description of used SPEC tests to 
evaluating performance. As we can see the used tests are 
really from various applications in order to come to more 
universal tested results. 

Table 3. Illustration of tested results for processor Intel i7-950 

Description Name 
Execution 

time [s] 
SPEC 
ratio 

String processing Perl 445 21,9 
Compression bzip2 554 17,4 
GNU C compiler Gcc 321 25,1 
Combinatorial optimization Mcf 202 45,1 
Artificial Intelligence Go 460 22,8 
Search gene sequence Hmmer 516 18,1 
Chess game (AI) Sjeng 507 29,3 
Quantum computer simulation Libquantum 97,7 212 
Video compression h264avc 605 36,6 
Discrete event simulation 
library 

Omnetpp 269 23,3 

Games/path finding Astar 414 16,9 
XML Processing Xalancbmk 240 28,7 
Geometric mean   29,1 

 
To compare any computers using SPEC ratios test we 

prefer to use geometric mean value therefore it defines the 
same relative value regardless of used normalized reference 
computer. If we were evaluating normalized values using 
arithmetic mean value results would be depended from the 
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type of used normalized computer. Graphical illustration of 
our tested computers is at Fig. 20 using standardized 
performance tests of SPEC consortium. According our 
expectations processor Intel i7-950 achieved the highest 
SPEC ratio value. 
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Figure 20. Comparison of tested processors. 

9. Conclusions  
Performance evaluation of computers generally used to 

be a very hard problem from birthday of computers. It was 
very hard to apply analytical methods based on queuing 
theory results to performance evaluation of sequential 
computers because of their high number of not predictable 
parameters. Secondly increasing of computer performance 
was done at first through technology improvements and 
processor’s architecture changes.  

From a point of user application of any analytical 
method (queuing theory, order analyze) is to be preferred in 
comparison with other possible methods because of 
transparent using of achieved results. Application of 
simulation method or Petri nets does not have such 
universal character as discussed analytical methods. 
Actually dominant using of multiprocessor or multicore 
computers opens more possibilities to apply a queuing 
theory results to their performance evaluation. This is based 
on a knowledge that outputs from more than one processor 
better approximate assumed Poisson distribution. Further 
the outputs from any computing node are going to another 
computing node in dominant parallel computers (NOW, 
Grid, meta computer). In relation to it we began to apply 
results of  queuing theory to at first single computing node 
of parallel computer and then to dominant parallel 
computers based on NOW and their high integrated Grid 
(virtual parallel computer). To solve such coupled network 
of computing nodes appoints to couple network of queuing 
theory systems. We refer to it in another paper of this 
Special Issue [11]. The achieved results we can apply to 
performance modeling of multiprocessors or multicores) 
using as input parameter ρ = λ .E(ts) / m (for m=1 we can 
model computing node with one processor) as follows   

• running of unbalanced parallel processes where λ is a 
parameter for incoming parallel processes with their 

exponential service time distribution as E(ts) = 1/µ 
(M/M/m model). In case of balanced parallel 
processes we could use the results as upper limits of 
exanimate parameters  

• running of parallel processes (λ parameter for 
incoming parallel processes with their deterministic 
service time E(ts) = 1/µ = constant). The same 
deterministic servicing time is a very good 
approximation for all optimal balanced parallel 
processes (M/D/m model) 

• in case of using M/D/m model we can consider λ 
parameter also for incoming computer instructions 
with their average service time for instruction ti, 
where E(ts) = 1/µ = ti = constant. 

To consider incoming instructions at using M/M/m 
system it would be necessary to recalculate at entrance 
incoming parallel processes to instructions. To verify and to 
precise used analytical models we have been used SPEC 
ratio tests results (mean values of execution times for 
applied tests). To get comparable results we used the 
relation between throughput and execution time (latency) 
as 

Latency
Throughput

1= . 

To model single computing nodes we can also use other 
more complicated single queuing theory systems than the 
analyzed ones (M/M/1, M/M/m, M/D/1, and M/D/m). We 
have choose the analyzed models from these causes 

• to finish performance analysis of networks of queuing 
theory system we need results of chosen single 
queuing theory systems M/M/m and M/D/m 

• we need their results to compute approximation 
relation for M/D/m 

• M/M/1 and M/M/m models could be used to compare 
their results with other models M/D/1 and M/D/m 
respectively 

• results of analyzed models M/M/m and M/D/m are 
necessary to finish coupled network of computing 
nodes [12]. 

Now according current trends in virtual parallel 
computers (SMP, NOW, Grid), based of powerful personal 
computers, we are looking for unified flexible models of 
any parallel computer that will be incorporated influences 
of 

• other queue ordering discipline than FIFO 
• various routing strategies 
• various decomposition models etc. 
In such flexible models we would like to study load 

balancing, inter process communication (IPC), transport 
protocols, performance prediction etc. We would refer to 
achieved results later. 
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