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Abstract: In order to improve energy-effect, Compressed Sensing has been employed gradually in the process of 

collaborative communication. For practical applications, localized features of local area are further considered in this 

technology, which is called classification CS. However, collaborative methods in current literatures are not so suitable in this 

scene that the advantages of CS could not be benefit. In this paper, a novel collaborative communication mechanism based on 

classification CS is proposed for actual environments. An effective collaborative transmission mode based on classification is 

presented, in which energy cost reduce effectively in the process of transmission and the reconstructed signals could reach at 

least the theoretical low bound to avoid redundant samplings. In experiments, our mechanism has been proved valuable and 

feasible in realistic applications. 
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1. Introduction 

In the process of transmitting information in Wireless 

Sensor Networks (WSNs), improving energy-effect of 

sensors is an especially important problem to prolong the 

lifetime of networks. Compressive Sensing (CS), as a novel 

and effective signal transforming technology, has been 

proposed in different fields, such as medical [1] and image 

[2]. At the same time, this technology has also been adopted 

gradually in WSN [3-11]. 

Compressive sensing is a signal sampling technique that 

acquires few sparse or compressible signals and then 

recovers them precisely. The transmitter only needs to send 

the sampled signals, which are obtained through a simple 

method of measurement, to the termination instead of 

compressing and encoding the original signals. After 

receiving the sampled signals, the termination can recover 

the original signals accurately through an effective recovery 

algorithm. Obviously, it is the significant advantage of CS 

technology that energy cost is rarely needed in the process of 

sampling signal. In this case, compressive sensing could be 

applied to reduce efficiently the energy cost of sensors in the 

process of collaborative communication. For instance, [4] 

proposes the idea of oversample for the robustness of data 

transmission. It obviously increases the energy cost of 

sensors and the risk of unnecessary sampling. [5-7] use CS 

technologies in some special scenes in order to construct 

sparsity signals. The effectiveness of the algorithms greatly 

depends on special scenarios in actual applications, as the 

original signals must be recognized as the sparse signals. The 

restrictive conditions confine the applicational space of these 

methods. [8-9] implies that the energy of the transmitting end 

was enough, which could not be applied in WSN on account 

of limited energy of sensors. For better collaborative 

communication, some researches based on localized 

characters in practice have been presented recently, such as 

[10] shown spatial-temporal correlation and [11] discussed 

the features of local region. These schemes are applied in 

different situations, however, they indicates a common idea 

that is classification based a certain standard could further 

improve the effects of CS. 

Unfortunately, their transmission modes in these literatures 

are so simple and direct without any cooperation strategy, 

thus the processes of transportation are not energy-effective 

apparently based on classification. Compared with non-CS 

methods, it is known that bottom and side sensors in the 

network cost more energy in traditional CS. Hence, it would 

result in unnecessary energy waste considerably in practice, 
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especially when the data are conveyed in the case of 

classification. Furthermore, it is difficult for traditional CS to 

know whether samplings are enough for accurate 

reconstruction. In other words, the receiving terminal could 

not realize when the process of signals sampling should be 

stopped in order to avoid redundant samplings. 

In this paper, a novel collaborative communication 

mechanism based on classification CS is proposed to address 

these problems. For collaborative transmission, an effective 

transmission mode is proposed to reduce energy cost and a 

sampling principle is presented to avoid redundant 

samplings. In this work, we propose a hybrid scheme that 

both CS and non-CS are adopted for energy-effective 

transmissions. Based on the classified network, the transfer 

modes in both inter-classes and intra-classes are different. In 

inter-classes, we choose suitable relay nodes in a class which 

the closest to the sink in this class. Sensors directly convey 

original signals to their relays without using CS, since the 

number of hops is probably very small in a certain class. 

Therefore, these sensors may merely transmit data few times 

instead of the number which is equal to the required 

measurement times in the CS method. Subsequently, 

localized schemes mentioned above could be applied after 

these relay nodes receive all original signals of the remaining 

sensors of classes, which is very beneficial to reduce energy 

cost. That is, the functions of relay nodes in this transmission 

mode are not only a signal forwarder but also a processor. 

Afterwards, new values are produced and sent to the sink 

using CS in intra-classes. In this process, two conditions 

should be considered. One is that the scheme of sampling has 

to meet the requirement of irrelevance between measurement 

matrix and sparse matrix. The other is that a high accurate 

reconstruction is required to prevent error diffusion since the 

received data by the sink are not original signals. For the 

former, we present a “good” measurement matrix which is as 

effective as random matrix. For the later, we present a 

principle of effective sampling. It can reach the theoretical 

low bound of the accuracy of signal reconstruction. That is, 

invalid samplings can be avoided. Using our transport 

method, energy consumption of bottom and side sensors 

effectively decrease, while no extra transmissions are 

required for the rest sensors. Our experiments show that the 

energy cost in our method saves about at least 20%. In 

particular, it saves about 60% when the number of sensors is 

not very large (say, no more than 50). 

Our contributions in the paper are summarized as follows: 

a) We propose a solution that both CS and non-CS are 

employed in the process of collaborative communication, 

which effectively reduces energy consumption of sensors. 

b) The proved sampling principle could at least reach the 

theoretical low bound of the accuracy of the signal 

reconstruction, which avoids invalid samplings. 

The rest of this paper is organized as follows. Section 2 

introduces background of CS and DCS and the simple 

concepts of Ricci flow. Section 3 outlines the collaborative 

transmission mechanism which includes transmission. 

Discussion is presented in Section 4. Experiments in actual 

environments and simulations are in Section 5. Finally, 

conclusion is given in Section 6. 

2. Background and Relative Concepts 

In this section, we shall briefly review the natural 

compressive sensing theory, including Restricted Isometry 

Property and 
1
l  minimization reconstruction algorithm, 

which become the basis of CS technology. Furthermore, the 

theory of Distributed Compressed Sensing would be 

introduced. This theory explores mainly the internal character 

of signals and their mutual interrelations. 

2.1. Compressive Sensing Theory 

Compressive sensing [14-16] is a novel fusion technology 

in signal acquisition and compression reconstructing sparse 

signals in form of few random measurements. According to 

the theory of CS, it simultaneously samples and compresses 

signals which could have a sparse representation in some 

known basis or dictionaries in the process of sampling and 

recovers the original signal stably and exactly by linear 

programming. 

Consider C is a N-dimensional signal and Φ is M×N 

matrix, where M<N, and set Y=Φ×C, then Y is an M-

dimensional vector and could be considered as M 

measurements from C through the measurement matrix Φ. 

Based on the conclusion of CS theory, it is probable that the 

original signal C could be reconstructed precisely from the 

compressed signal Y if C can be represented as a linear 

combination of only K basis vectors, where K < M. 

Meanwhile, the measure matrix Φ must satisfy Restricted 

Isometry Property (RIP) in order to recover C stably. RIP 

could be expressed as: Let (0,1)θ ∈ , for any 

[1,min( , )]m N M∈ , the restricted isometry constant of C is 

equal to the smallest quantity ( )
m m

θ θ ϕ=  such that 

( ) ( )2 2 21 || || || || 1 || ||m I mC C Cθ ϕ θ− ≤ ≤ +          (1) 

for any subset I of ϕ  with I m≤  and coefficient sequences

( )jC , j I∈ . The measure matrix Φ is called to satisfy the RIP 

of order m with parameter θ, 0
m

θ θ≤ < . If equation (1) can 

be satisfied, then the signal C could be recovered accurately 

with high probability by solving the convex problem (2) or 

(3) 

1minimize || || lC  subject to  Y=ϕ  × C             (2) 

1minimize || || lC subject to 1||  C-Y || lϕ λ× ≤        (3) 

where the 1
l -norm is defined by 1|| || lC =

1

N

ii
C∑  for each 

N

iC C R= ∈ , [1, ]i N∈  and λ  is an arbitrarily small 

constant. That is the so-called 1
l  minimization reconstruction 

algorithm in CS technique. 

Obviously, there are three aspects that need to be taken 

into account in the CS theory. First, a special sparse matrix 
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consisted of several sparse basis is needed, which is able to 

transform the original signal C to a sparse signal. Second, a 

measurement matrix Φ (Φ ∈ xNR M
 and M<<N) should be 

irrelevant to the sparse matrix. It is important to design an 

optimized measurement matrix to increase the accuracy of 

CS reconstruction. Finally, a reliable recovery algorithm 

should be adopted to reconstruct original signals. 

2.2. Distributed Compressive Sensing 

Distributed Compressed Sensing (DCS) has been proposed 

in [17] to exploit both intra- and inter-signal correlation 

structures to distributed code for mutli-signal ensembles. 

This theory rests on the concept that is called Joint Sparsity 

Model (JSM). Similar with the description of CS theory, 

consider a signal X is N dimensions vector <
1 2,, ..... Nx x x >, 

where ( )
1

N

j j
x

=
∈

NR . Let a sparse matrix Ψ consisted of a set 

of sparse basis Ψi, 1≤i≤N, and each element 
jx can be 

represented sparsely by a subset of matrix Ψ. 

Based on JSM, the signal X is generated as a combination 

of two parts, which are called the common component and 

the innovation component. In this case, all elements of the 

signal contain the same common part while each individual 

has a different innovation component. That is, 

j c jx z z= + , j ∈ (1, 2,…, N)                 (4) 

where 
c

z
 
and 

jz
 
denote the common component and the 

innovation component, respectively. 

Different sparsity assumptions lead to various joint sparse 

models related to both the common part and the innovation 

part. The JSM-1 model is suitable for the actual applications 

in WSNs, which is given by: 

j c jx z z= + , j ∈ (1, 2,…, N)               (5) 

subject to  
c c

z ψθ= , 

0c cz kθ = , 

j jz ψθ= , 

0j jz kθ =  

In (5), the common component cz  is c
k  sparse in the basis 

Ψ and shared by each ( )
1

N

j j
x

=
∈ NR , and the innovation 

component jz  is jk  sparse in the same basis. 
0

 denotes 

the 0-norm. 

Under this model, the common part of the signal should be 

extracted as many as possible in order to obtain the recovered 

result precisely. In other words, the error rate of 

reconstruction will be decreased when the proportion of the 

abstracted common component is far more than the 

individual one in the signal, which is the reason of 

classification. In each class, the common component is 

abstract, such as [11], and the accuracy of reconstruction will 

be increased. 

3. Collaborative Transmission Based on 

CS 

In this section we will describe the collaborative 

transmission mode based on the mixed method. In the inter-

class, sensors transmit the gathering data to their relay nodes 

by the traditional transmission. After producing new data, the 

relay nodes convey them to the sink by CS. To reduce 

transmission, a sampling principle is presented and proved. 

3.1. In Inter-Class 

As we all know, an obvious advantage of CS technique is 

that energy cost of top sensors which are closer to the sink is 

the same as the one of bottom sensors, which is valuable for 

the load balancing of the whole network. However, this 

theoretical superiority is probably not embodied in actual 

environments, even worse. Compared with non-CS methods, 

bottom sensors in the network cost more energy in traditional 

CS, though load balancing of the network has been reached. 

Hence, it would result in unnecessary energy waste 

considerably in practice. Consider N sensors are deployed in a 

localized region with one sink. That is, there are N sensors in 

the network and one of them is the sink sensor. If the number 

of measurement is M, then N-1 sensors must transmit their 

data packages M times according to CS theory. On the 

contrary, the number of necessary transmission without CS 

only depends on the number of their hops to the sink. In 

practice, this number is much less than M since the region is 

localized. Sometimes, the required amount of transmission 

using CS is obvious more than the one without CS in real 

situations. An example is demonstrated in Section V. 

Hence, we propose a simple yet effective transmission 

mode in inter-classes. A relay node r in a class is selected to 

which the rest sensors send their data based on the given 

routes. That is, these sensors just need to transmit the same 

times as traditional transport modes. After receiving data 

packages, r does not forwards these values directly but 

produces a new data 
new

d  using mentioned above schemes. 

It is clear that the number of transmission will decrease 

and energy cost will reduce, since 1) the number of sensors in 

a class is probably less than the number of measurement 

owning to environment influences; 2) further features in 

actual environments could be applied after relay nodes 

receive all signals of the rest sensors. In this case, the number 

of transmission in inter-class is (| ( ) | 1)
r R

S r
∈

−∑ , where R is 

a set of relay nodes and | |• denotes cardinality, ( )S r denotes 

a class whose relay node is r . 

3.2. In Intra-Class 

As for transmission mode in intra-classes, relay nodes only 

need to transport their new value newd s to the sink by CS 

technique. Nevertheless, there are two aspects which have to 
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be noticed. One is that the incoherent between measurement 

matrix and sparse matrix should be satisfied based on the 

theory of CS. The other is that the accuracy of reconstruction 

is required of a high standard. For better effect of 

compression, some schemes are used in the process of 

producing new values and thus data which the sink receives 

are not original signals. In other words, these values are just 

“intermediate data”. To get original signals accurately, 

intermediate data must be recovery very precisely to prevent 

error diffusion. Intuitively, the number of measurement 

should be large enough to recover signals high accurately 

[22]. Unfortunately, it is obvious that unnecessary 

transmissions would arise. 

In this paper, a “good” measurement matrix and a 

sampling principle are presented for energy-effective 

transmission. The former is used to guarantee incoherence 

between measurement matrices and transform matrices, and 

the later is employed to decide whether the number of 

measurement is enough to reconstruct signals exactly. 

Firstly, the set {-1, 0, 1} is used to produce measurement 

matrices by probability selecting. The selection probabilities 

are 1/4, 1/2, 1/4 respectively. Therefore, the occurrence 

probability of zero in a measurement matrix is equal to one 

of non-zero in theory. In this case, our measurement matrix 

will be effective as well as random matrices [7], which are 

excellent candidates for incoherence between measurement 

matrices and transform matrices [1]. 

Subsequently, an effective sampling principle based on the 

proposed measurement matrix is given as follows: 

Suppose the original signal is
1 2

[ , , ]
n

S s s s= ⋯ , when the 

terminal received M measurement 
1 2

[ , , , ]
M M

A a a a= ⋯  

based on our measure scheme, the M-th recovery result is 
( )MS . If the later results are all equivalent, that is

( 1) ( ) ( )M M MS S S+ += = =ℓ
⋯ , then 

( )
{ } 1 2

M
P S S

−
= ≥ −

ℓ

 

Based on this principle, the sink could ensure whether 

sampling should be stopped with accurate reconstruction. In 

this case, the number of transmission in intra-class is 

| |m R×
, where m is the number of measurement. Hence, the 

number of transmission in the whole network is 

| | (| ( ) | 1)
r R

m R S r
∈

× + −∑                       (6) 

4. Discussion 

This section discusses several important application-

related subjects, which are ratio of compression and rule of 

sampling for collaborative transmission. 

4.1. Ratio of Compression 

As Fig. 1 (a) shows, there are 20 sensors in the network 

and one of them is the sink sensor. Suppose the number of 

measurement is 7, then the rest nineteen sensors must 

transmit data package 7 times according to the CS theory. 

The digits in parentheses denote the necessary number of 

transmitting based on conventional methods (called non-CS). 

Obviously, the required amount of transmitting using CS is 

more than one using non-CS. To address this problem, a 

simple yet effective mixed idea is considered, which is 

illustrated in Fig. 1 (b). An essential difference is that each 

sensor which is close to the bottom only transmits its data to 

its upstream sensor using traditional methods until a certain 

sensor’s children reaches to 7-1=6. In this case, these branch 

sensors only need to transmit the same number with one in 

parentheses. Afterwards, CS is applied in remaining sensors, 

the number of whose children is equal to or greater than 6. In 

this case, the relative ratio of compression between our 

scheme and natural CS is 48/133=36.09%. It is clearly for the 

whole network that the number of transmitting decreases and 

energy cost reduces. Experiments are illustrated in Section V. 

 

(a) Natural CS v. s. no-CS 

 
(b) Our scheme v. s. no-CS 

Fig. 1. Comparison of the number of transmission. 

4.2. Rule of Sampling 

According the sampling principle, ( )MS S=  is high 

probability if 
1

2 2
M

N
−

 is much less than 1, since the 

elements of ia  belong to finite set {−1, 0, 1} and then a sub-

matrix MA  whose size is M×M can be singular with non-zero 

probability. 
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5. Experiments 

Sensors are used to gather temperature, illumination and 

magnetism of environments outdoors. After information 

coverage, data sensed by wake sensors and estimates of 

crucial sensors are transmitted to sink sensor MTS310. The 

protocol system of wireless network in our experiments 

includes three protocols of layers, which are physical layer, 

data link layer and net layer. The protocol of the former two 

is IEEE 802.15.4 and the protocol of the last is XMesh that is 

a multi-hop, Ad-hoc, mesh network protocol. 

To display the stability of the performance in the real 

applications, IRIS sensors in our experiments are divided into 

four groups, the numbers of which are 20, 50, 100 and 150 

respectively. They are all connected in a self-organized way 

to gather temperature, illumination and magnetism 3 times 

per minute. To guarantee the accurate of the results, average 

values of the algorithms are calculated through 1500 times. 

 

(a) the relation of energy cost and the number of nodes 

 

(b) the relation of variance and the number of nodes 

Fig. 2. Our transmission mode V. S. Natural CS and No CS. 

Firstly, we compare our transmission mode to natural CS 

and non-CS. According to the Fig. 2 (a), relative energy costs 

of three schemes are represented. Energy cost of natural CS 

is set to 1 which is illustrated by the straight line. The results 

show that our transmission mode costs less energy than 

others. Besides, both our scheme and non-CS are better than 

CS method, since the number of sensors in classes is less 

than the number of measurement. As the number of sensors 

increase, the advantages of CS are exploited and more energy 

is saved by our scheme. Fig. 2 (b) illustrates the state of 
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balancing load. It is undoubted that the load of the network 

using CS is the optimal equilibrium; however, its energy cost 

is the most according to the analysis of Section II-A. In 

practice, our mixed scheme cost least energy as well as 

preserving the load balancing. Furthermore, the load of the 

network is stable as its scale enlarges, compared with more 

and more imbalanced situation using non-CS. 

 

(a) our measurement and random measurement 

 

(b) our sampling and normal sampling 

Fig. 3. Our measurement and sampling V. S. CS. 

Furthermore, we compare our measurement matrix to 

random matrices, including Gaussian random and Bernoulli 

random. Fig. 3 (a) illustrates that performances of three 

measurement matrices are similar since our measurement 

matrix is as good as random matrices. Then the ratio of 

sp normaln n  is demonstrated in Fig. 3 (b), where spn  denotes 

sampling numbers by using sampling principle and normal
n  

denotes 3, 4, 5 times of sparsity of signals, which are normal 

sampling numbers based on the CS theory. The results reveal 

our sampling principle is effective and could reduce energy 

cost increasingly as the scale of the network growing. That 

is, it can be applied in a large-scale network. 

6. Conclusion 

In this paper, we propose a collaborative communication 

mechanism based on classification CS. In the case of 

collaborative transmission, an effective transmission method 

is proposed in which both non-CS and CS are adopted. In the 

process of transmission, all sensors in a class convey their 

data to the relay node of this class, and then the relay node 
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produces a new data and transmits to the sink. After 

receiving data, a sampling principle is proposed to reduce 

redundant samplings, which gives the theoretical low bound 

of the accuracy of signal reconstruction. Experiments show 

that our transmission mechanism outperforms natural CS and 

routing scheme. 
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