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Abstract: The paper describes development, realization and verification of more precise analytical models for the study of 

the basic performance parameters of parallel computers based on connected parallel computers (Cluster, NOW, Grid). At first 

the paper describes very shortly the developing steps of parallel computer architecture and then he summarized the basic 

concepts for performance modeling of mentioned parallel computers. To illustrate theoretical evaluation concepts the paper 

considers in its experimental part the achieved results on concrete analyzed examples and their comparison. The suggested 

model considers for every node of the NOW or Grid networks one part for the own workstation’s activities and another one 

for node’s communication channel modeling of performed data communications. In case of using multiprocessor system, as 

modern node’s communication processor, the suggested model considers for own node’s activities M/D/m queuing theory 

system and for every node’s communication channel M/D/1 system. Based on these more realistic assumptions we have been 

developed improved analytical models to account the real no exponential nature of the inputs to the modeling queuing 

systems. The achieved results of the developed models were compared with the results of the common used analytical and 

simulation model to estimate the magnitude of their improvement. The developed analytical models could be used under 

various ranges of input analytical parameters, which influence the architecture of NOW or Grid computer networks and 

which are interested from the sight of practical using. These consequences are in relation to the developed analytical models 

and their verifications through simulation model. 

Keywords: Parallel Computer, Network of Workstation (NOW), Cluster, Grid, Analytical Modeling, Queuing Theory, 

Performance Evaluation, Queuing Theory System 

 

1. Developing Periods in Parallel 

Computers 

In the first period of parallel computers between 1975 

and 1995 dominated scientific supercomputers, which were 

specially designed for the high performance computing 

(HPC). These parallel computers have been mostly used 

computing models based on data parallelism. Those 

systems were way ahead of standard common computers in 

terms of their performance and price. General purpose 

processors on a single chip, which had been invented in the 

early 1970’s, were only mature enough to hit the HPC 

market by the end of the1980s, and it was not until the end 

of the 1990’s that connected standard workstation or even 

personal computers (PC) had become competitive at least 

in terms of theoretical peak performance. Increased 

processor performance was caused through massive using 

of various parallel principles in all forms of produced 

processors. Parallel principles were used so in single PC’s 

and workstations (scalar or super scalar pipeline, 

symmetrical multiprocessor systems - SMP) [1] so as on 

POWER PC as in connected network of workstations 

(NOW). Gained experience with the implementation of 

parallel principles and intensive extensions of computer 

networks, leads to the use of connected computers for 

parallel solution. These trends are to be characterized 

through downsizing of supercomputers as Cray/SGI, T3E 

and from other massive parallel systems [16] (number of 

used processor >100) to cheaper and more universal 

parallel systems in the form of a network of workstations 

(NOW). This period we can name as the second developing 

period. Their large growth since 1980 have been stimulated 

by the simultaneous influence of three basic factors [10, 19]  

• high performance processors and computers  

• high speed interconnecting networks   
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• standardized tools for development of parallel 

algorithms (Shared memory, distributed memory).  

Developing trends are actually going toward building of 

wide spread connected NOW networks with high 

computation and memory capacity (Grid). Conceptually 

Grid comes to the definition of metacomputer [31]. 

Metacomputer can be understood as the massive computer 

network of computing nodes built on the principle of the 

common use of existing processors, memories and other 

resources with the objective to create an illusion of one 

huge, powerful supercomputer. Such higher integrated 

forms of NOW’s (Grid module) create various actually 

Grid systems or metacomputers we can define as the third 

period in developing trends of parallel computers. 

2. Classification of Parallel Systems 

It is very difficult to classify all existed parallel systems. 

But from the point of programmer-developer we can divide 

them [4, 10] to the two following different groups 

• synchronous parallel architectures. These are used for 

performing the same or very similar computation on 

different sets of data. They are often used under central 

control, that means under the global clock 

synchronization (vector, array system etc.) or a 

distributed local control mechanism (systolic systems 

etc.). The typical examples of synchronous parallel 

computers illustrate Figure 1 on its left side. Some of 

used parallel principles in past time are step-by-step 

applied in actually modern personal computers (PC) 

for example in a form of SIMD (Single instruction 

multiple data) computer instructions within their 

computer set instruction (CSI) 

• asynchronous parallel computers. They are composed 

of a number of fully independent computing nodes 

(processors, cores or computers. In programming 

parallel algorithms there are necessary to use inter 

process communications (IPC). To this group belong 

mainly various forms of computer networks (cluster), 

network of workstation (NOW) or more integrated 

Grid modules in the form as any networks of NOW 

networks (Grid). The typical examples of 

asynchronous parallel computers illustrate Figure 1 on 

its right side. According long-time trends 

asynchronous parallel computers based on PC 

computers (single, SMP) are dominant parallel 

computers [16, 27]. 
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Figure 1. Classification of parallel computers. 

3. Architectures of Parallel Computers 

3.1. Symmetrical Multiprocessor System 

Symmetrical multiprocessor system (SMP) is a multiple 

using of the same processors or cores which are 

implemented on motherboard in order to increase the whole 

performance of such system. Typical common 

characteristics are following 

• each processor or core (computing node) of the 

multiprocessor system can access main memory 

(shared memory) 

• I/O channels or I/O devices are allocated to individual 

computing nodes according their demands  

• integrated operation system coordinates cooperation of 

whole multiprocessor resources (hardware, software 

etc.).    

Concept of such multiprocessor system illustrates Figure 

2. 
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Figure 2. Typical characteristics of multiprocessor systems. 

Typical practical architecture example of eight 

multiprocessor systems (Intel Xeon) illustrates Figure 3. 
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Figure 3. Architecture of multiprocessor (8-Intel processor). 

3.2. Network of Workstations 

There has been an increasing interest in the use of 

networks of workstations (NOW) connected together by 

high speed networks for solving large computation intensive 

problems. This trend is mainly driven by the cost 

effectiveness of such systems as compared to massive 

multiprocessor systems with tightly coupled processors and 

memories (Supercomputers). Parallel computing on a cluster 

of workstations connected by high speed networks has given 

rise to a range of hardware and network related issues on any 

given platform [6]. With the availability of cheap personal 

computers, workstations and networking devises, the recent 

trend is to connect a number of such workstations to solve 

computation intensive tasks in parallel on such clusters. 

Network of workstations [13, 28] has become a widely 

accepted form of high performance computing (HPC). Each 

workstation in a NOW is treated similarly to a processing 

element in a multiprocessor system. However, workstations 

are far more powerful and flexible than processing elements 

in conventional multiprocessors (Supercomputers). To 

exploit the parallel processing capability of a NOW, an 

application algorithm must be paralleled. A way how to do it 

for an application problem builds its decomposition strategy. 

This step belongs to a most important step in developing 

effective parallel algorithm [13, 18]. 
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Figure 4. Architecture of NOW. 

Principal example of networks of workstations is at 

Figure 4. The individual workstations are mainly powerful 

workstations based on multiprocessor or multicore platform. 

3.3. Grid Systems 

The In general Grids represent a new way of managing 

and organizing of computer networks and mainly of their 

deeper resource sharing (Figure 5.). 
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Figure 5. Architecture of Grid node. 

Conceptually they go out from a structure of virtual 

parallel computer based on computer networks. In general 

Grids represent a new way of managing and organizing of 

resources like network of NOW networks. This term define 

massive computational Grid with following basic 

characteristics  

• wide area network of integrated free computing 

resources. It is a massive number of interconnected 

networks, which are connected through high speed 

connected networks during which time whole massive 

system is controlled with network operation system, 

which makes an illusion of powerful computer system 

(Virtual supercomputer) 

• grants a function of metacomputing that means 

computing environment, which enables to individual 

applications a functionality of all system resources  

• system combines distributed parallel computation with 

remote computing from user workstations. 

3.3.1. Conventional HPC Environment Versus Grid 

Environments 

In Grids, the virtual pool of resources is dynamic and 

diverse, since the resources can be added and withdrawn at 

any time according to their owner’s discretion, and their 

performance or load can change frequently over the time. 

The typical number of resources in the pool is of the order 

of several thousand or even more. An application in a 

conventional parallel environment (HPC computing) 

typically assumes a pool of computational nodes from (a 

subset of) which a virtual concurrent machine is formed [4, 

24]. The pool consists of PC’s, workstations, and possibly 

supercomputers, provided that the user has access (valid 

login name and password) to all of them. Such virtual pool 

of nodes for a typical user can be considered as static and 

this set varies in practice in the order of 10 – 100 nodes. At 

table 1 we summarize mine analyzed differences between 

conventional distributed and Grid systems. We can also 

generally say that 

• HPC environments are optimized to provide maximal 

performance 

• Grids are optimized to provide maximum of existed 

resource capacities. 
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Table 1. Comparison of environments in HPC and Grid computing 

 Conventional HPC environments  Grid environments 

1. A virtual pool of computational nodes  A virtual pool of resources 

2. A user has access (credential) to all nodes in the pool   A user has access to the pool but not to individual nodes 

3. Access to a node means access to all resources on the node  Access to a resource may be restricted 

4. The user is aware of the applications and features of the nodes   User has little or no knowledge about each resource 

5. Nodes belong to a single trust domain   Resources span multiple trust domains 

6. Elements in the pool 10 – 100, more or less static  Elements in the pool >>100, dynamic 

 

3.4. Integration of Parallel Computers 

With the availability of cheap personal computers, 

workstations and networking devises, the recent trends are 

to connect a number of such workstations to solve 

computation intensive tasks in parallel on various 

integrated forms of clusters based on computer networks. 

We illustrated at Figure 6 typical integrated complex 

consisted of NOW networks modules. It is clear that any 

classical parallel computers (massive multiprocessor, 

supercomputers etc.) in the word could be a member of 

such NOW [29]. 

For the support of reaching connectivity to any of existed 

integrated parallel computers in Europe (supercomputers, 

NOW, Grid) we can use the European classical massive 

parallel systems by means of scientific visits of project 

participants in the HPC centers of EU. These HPC centers 

are EPCC Edinburgh (UK), BSC (Barcelona, Spain), 

CINECA (Bologna, Italy), GENCI (Paris, France), SARA 

(Amsterdam, Netherland), HLRS (Stuttgart, Germany), 

CSC (Helsinki, Finland). 
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Figure 6. Integration of NOW networks. 

4. The Role of Performance 

Quantitative evaluation and modeling of hardware and 

software components of parallel systems are critical for the 

delivery of high performance. Performance studies apply to 

initial design phases as well as to procurement, tuning and 

capacity planning analysis. As performance cannot be 

expressed by quantities independent of the system workload, 

the quantitative characterization of resource demands of 

application and of their behavior is an important part of any 

performance evaluation study. Among the goals of parallel 

systems performance analysis are to assess the performance 

of a system or a system component or an application, to 

investigate the match between requirements and system 

architecture characteristics, to identify the features that have 

a significant impact on the application execution time, to 

predict the performance of a particular application on a 

given parallel system, to evaluate different structures of 

parallel applications. 

The individual workstations are mainly powerful 

workstations based on multiprocessor or multicore platform. 

4.1. Performance Evaluation Methods 

The fundamental concepts have been developed for 

evaluating parallel computers. Trade-offs among these 

performance factors are often encountered in real-life 

applications. To the performance evaluation we can use 

following methods 

• analytical methods 

� application of queuing theory [7, 8] 

� asymptotic (order) analysis [11, 13] 

• simulation [20] 

• experimental measurement 

� benchmarks [17, 23] 

� modeling tools [30, 22] 

� direct parameter measuring [11, 13] 

When we solve a model we can obtain an estimate for a 

set of values of interest within the system being modeled, for 

a given set of conditions which we set for that execution. 

These conditions may be fixed permanently in the model or 

left as free variables or parameters of the model, and set at 

runtime. Each set of m input parameters constitutes a single 

point in m-dimensional input space. Each solution of the 

model produces one set of observations. Such a set of n 

values constitutes a single point in the corresponding 

n-dimensional observation space. By varying the input 

conditions we hope to explore how the outputs vary with 

changes to the inputs. 

4.1.1. Analytic Techniques 

There is a very well developed set of techniques which 

can provide exact solutions very quickly, but only for a 
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very restricted class of models. For more general models it 

is often possible to obtain approximate results significantly 

more quickly than when using simulation, although the 

accuracy of these results may be difficult to determine. The 

techniques in question belong to an area of applied 

mathematics known as queuing theory, which is a branch of 

stochastic modeling [3, 25]. Like simulation, queuing 

theory depends on the use of powerful computers in order 

to solve its models quickly. We would like to prefer 

techniques which yield analytic solutions. 

4.1.2. The Simulation Method 

Simulation is the most general and versatile means of 

modeling systems for performance estimation. It has many 

uses, but its results are usually only approximations to the 

exact answer and the price of increased accuracy is much 

longer execution times. To reduce the cost of a simulation 

we may resort to simplification of the model which avoids 

explicit modeling of many features, but this increases the 

level of error in the results. If we need to resort to 

simplification of our models, it would be desirable to 

achieve exact results even though the model might not fully 

represent the system. At least then one source of inaccuracy 

would be removed. At the same time it would be useful if 

the method could produce its results more quickly than 

even the simplified simulation. Thus it is important to 

consider the use of analytic and numerical techniques 

before resorting to simulation. This method is based on the 

simulation of the basic characteristics that are the input data 

stream and their servicing according the measured and 

analyzed probability values simulate the behavior model of 

the analyzed parallel system. Its part is therefore the time 

registration of the wanted interested discrete values. The 

result values of simulation model have always their discrete 

character, which do not have the universal form of 

mathematical formulas to which we can set when we need 

the variables of the used distributions as in the case of 

analytical models. The accuracy of simulation model 

depends therefore on the accuracy measure of the used 

simulation model for the given task. 

4.1.3. Asymptotic (Order) Analysis 

In the analysis of algorithms, it is often cumbersome or 

impossible to derive exact expressions for parameters such 

as run time, speedup, efficiency, issoefficiency etc. In many 

cases, an approximation of the exact expression is adequate. 

The approximation may indeed be more illustrative of the 

behavior of the function because it focuses on the critical 

factors influencing the parameter. We have used an 

extension of this method to evaluate parallel computers and 

algorithms in [11, 13]. 

4.1.4. Experimental Measurement 

Evaluating system performance via experimental 

measurements is a very useful alternative for parallel 

systems and parallel algorithms. Measurements can be 

gathered on existing systems by means of benchmark 

applications that aim at stressing specific aspects of the 

parallel systems and algorithms. Even though benchmarks 

can be used in all types of performance studies, their main 

field of application is competitive procurement and 

performance assessment of existing systems and algorithms. 

Parallel benchmarks extend the traditional sequential ones 

by providing a wider a wider set of suites that exercise each 

system component targeted workload. 

5. Little's Laws 

One of the most important results in queuing theory is 

Little's law. This was a long standing rule of thumb in 

analyzing queuing systems, but gets its name from the 

author of the first paper which proves the relationship 

formally. It is applicable to the behavior of almost any 

system of queues, as long as they exhibit steady state 

behavior. It relates a system oriented measure - the mean 

number of customers in the system - to a customer oriented 

measure - the mean time spent in the system by each 

customer (the mean end-to-end time), for a given arrival rate. 

Little's law says 

E (q) = λ . E (t q ) 

or it’s following alternatives 

• E (w) = λ . E (tw) 

• E (w) = E (q) – ρ (single service where m=1) 

• E (w) = E (q) – m . ρ (m – services). 

We can use also following valid equation 

E (tq) = E (tw) + E (ts). 

where the named parameters are as 

• λ - arrival rate at entrance to a queue 

• m - number of identical servers in the queuing system 

• ρ - traffic intensity (dimensionless coefficient of 

utilization) 

• q - random variable for the number of customers in a 

system at steady state 

• w - random variable for the number of customers in a 

queue at steady state 

• E (ts) - the expected (mean) service time of a server 

• E (q) - the expected (mean) number of customers in a 

system at steady state 

• E (w) - the expected (mean) number of customers in a 

 queue at steady state 

• E (tq) - the expected (mean) time spent in system 

(queue + servicing) at steady state 

• E (tw) - the expected (mean) time spent in the queue at 

steady state. 

5.2. Queuing Networks 

Continuing the examination of analytically tractable 

models, we look for useful results for networks of queues. 

These can be divided into two main groups, known as 

product form and non-product form. Product form networks 

have the property that they can be regarded as 

independently operating queues, where steady state can be 

expressed as both a set of global balance equations on 

customer flow in the whole network and a set of local 



 American Journal of Networks and Communications 2013; 2(5): 112-124 117 

 

balance equations on each queue. Local flow balance says 

that the mean number of customers entering any queue 

from all others must equal the number leaving it to go to all 

others, including customers which leave and rejoin the 

same queue immediately. 

As an example of simplest queuing networks is serial 

connection of two queuing theory systems according Figure 

7. (Tandem network), for which we can get following final 

solution, that the probability of k1 demands at first node 

and k2 demands at second node is 

21 )1(.)1()()(),( 21221121

kk
kpkpkkp ρρρρ −−=⋅=  

where we assumed that 

1  ,1
2

2

1

1 <=<=
µ
λρ

µ
λρ  

and 

• p (k1, k2) is the probability of k1 demands in the first 

queue and k2 demands in the second queue 

• p (k1) is the probability of k1 demands in the first 

queue  

• p (k2) is the probability of k2 demands in the second 

queue. 

µ1
λ λ λ

 

Figure 7. Tandem network of two M/M/1 queuing systems. 

The final expression proves by evidence independence of 

both M/M/1 queuing theory systems. Generalization to the 

U queuing theory systems of M/M/1 or M/M/m made 

Jackson (Jackson theorem) [5, 9]. Several different ways of 

identifying this sort of behavior have been proposed, but 

the name product form comes from Jackson`s theorem, 

which expresses the joint probability of the numbers of 

customers at each queue being a particular combination is 

the product of their individual probabilities of having that 

number. We begin by considering Jackson networks and 

then look at the extension to a more general queuing theory 

systems. 

Based on Jackson result any network of queuing theory 

systems without feedback loop (they are not allowed to 

return any serviced demands again) with exponential 

service distribution, which are servicing independent 

Poisson input streams, generate also for a next node 

independent Poisson input stream. The whole demand 

probabilities for all nodes are given through multiplying of 

individual independent queuing theory systems and that in 

general as M/M/m systems. The outgoing stream will be 

exactly Poisson on the assumption of unlimited size of 

queue. 

5.3. Jackson Theorem 

Consider the case of a network of U queue/server nodes 

(Workstations). Customers enter the network at node j in a 

Poisson stream with rate γj. Each node has a multiple 

servers m (workstations based on multiprocessor, for m = 1 

workstations with single server) and service times are 

distributed exponentially, with mean 1/µj, (j = l,…, U). 

When a customer leaves node i it goes to node j with 

probability rij. Customers from i leave the network with 

probability  

∑
=

−
U

j

ijr
1

1  

Now let λi be the average total arrivals at node i, 

including those from outside (external input) and those 

from other nodes (Internal inputs). If the network is in 

steady state, λi is also the rate of customers leaving i node 

(including intern output). Overall we can formulate a set of 

„flow balance equations" which express these flows. 

λi= γi + ∑
=

U

i 1

λi rij  j=1,2,…, U 

As long as the network is open, i.e. at least one γi is 

non-zero, this represents a set of linear simultaneous 

equations with an obvious solution. Let traffic intensity at i 

be  

λi / mi . µj < 1 for every i. The joint distribution of the 

number of customers p (k1, k2, ... kU) at each of the U 

nodes, p1(k1), p2(k2), … pU (kU), can be expressed as 

∏
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This is Jackson theorem for M/M/m system. The 

individual probabilities pi (ki) are given as  
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Jackson's theorem describes each node as an independent 

single server system with Poisson arrivals and exponential 

service times. The total average number of customers in the 

whole NOW module is 

E (q)now = ∑
=

U

i

iqE
1

)(  

where E(q)i is given as 
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Then from Little's law, total time spent by customers in 

the network E(t)q is 

E[tq]now =∑
=

U

i i

iqE

1

)(

λ
 

Jackson theorem assumes for its applying verification of 

assumed independence of individual network nodes. Every 

element on its right side is a solution of independent 

M/M/m geeing system with their average input value λi. 

We can get the intensities of this individual inputs λi with 

solving a system of linear differential equations for 

concrete values of extern inputs λi and for given transition 

matrix rij. 

6. Modeling of the NOW and Grid 

NOW is a basic module of any Grid system (Network of 

NOW networks as for example Internet). Structure of 

essential parts in any workstation (i-th node) of NOW based 

on single processor (m=1) or multiprocessor system (m - 

processors or cores) is illustrated at Figure 8. Inter process 

communication (IPC) represents all needed communication 

in NOW as   

• communication among parallel processes 

• control communication.  

 ... 
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 LI u 
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. . 
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(other connected  
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External input 
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comm. 
 

 

Figure 8. Structure of i – th computing node (WSi). 

In principle we are assumed any constraints on structure 

of communication system architecture. Then we are 

modeling one workstation as a system with two dominant 

overheads  

• computation overheads (processor’s latency) 

• communication latency [21, 26]. 

 

Figure 9. Mathematical model of i – th node of NOW. 

To model these overheads through applying queuing 

theory we created mathematical model of one i-th 

computing node according Figure 9, which models 

• computation overheads (processor’s latency) [2] as 

queuing theory system 

• every communication channel of i-th node LIi 

i=1,2,…U (Link interface) as next queuing theory 

systems (communication system). 

Such communication network in NOW module we can 

represent by a weighted graph where their nodes are 

individual workstations. IPC data arrive at random at a 

source node and follow a specific route in the networks 

towards their destination node. Data lengths of 

communicated parallel processes in data units (for example 

in words) are considered to be random variables following 

distributions according Jackson theorem. Those data units 

are then sent independently through the communication 

network nodes towards the destination node. At each node a 

queue of incoming data units is served according to a 

first-come first-served (FCFS) discipline. The defined 

communication network generally creates oriented graph 

(communication network) with U-nodes according to the 

Figure 10, where 

• γ1, γ2, ..., γU represent total extern intensities of input 

data stream to the given WSi 

• rij is a relation probabilities from node i to the 

neighbouring connected nodes j (WSij) for (i= 1,...,U,  

j = 1,...U)  

• ui – the number of communication channels at i-th node 

• U – number of computing nodes (workstations)  

• β1, β2, ..., βU are the individual total external output 

streams of data units from WSi. 

Such a model corresponds in queuing theory to the model 

of open servicing network. Adjective ”open” characterize 

the extern input and output data stream to the servicing 

transport network [14, 26]. In common they are the open 

Markov servicing networks, in which the demand are mixed 

together at their output from one queuing theory system to 

another connected queuing theory system in a random way 

to that time as they are leaving the network. To the given i-th 

node the demand stream enter extern (from the network 

side), with the independent Poisson arrival distribution and 

the total intensity γi demands in seconds. After servicing at 

i-th node the demand goes to the next j-th node with the 

probability rij in such a way that the demand walks to the j-th 

node intern (from the sight network). At this time the 

demand departures from i-th node to the other nodes are 

defined with probability 

∑
=

−
U

j

ijr
1

1  
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Figure 10. Model of IPC communication system (U=4). 

6.1. Analytical Model of Workstations as M/M/m System 

Let U be a node number of the whole transport system. 

For every node of NOW (i-th node according Figure 11.) we 

define the following parameters 

• λi - the whole number of incoming demands to the i-th 

node, that is the sum both of external and internal 

inputs to the i-th node 

• ∑
=

=
U

i

i

1

γγ represent the sum of individual total extern 

intensities in the NOW  

• λij - the whole input flow to the j-th communication 

channel at i-th node 

• E(tq)i - the average servicing time in the program queue 

(the waiting in a queue and servicing time) in the i-th 

node 

• E(tq)ij - the average servicing time of the j-th queue of 

the communication channel (the queue waiting time 

and servicing time) at i-th node. 

 

Figure 11. Mathematical model of i-th node. 

Then the whole extern input flow to the transport network 

is given as  

∑
=

=
U

i

i

1

γγ
   

and  
i

u

i

iji βλλ +=∑
=1

 

where βi represents the intern output from i-th node (finished 

parallel programs in this node) which is not further 

transmitted and is therefore not entering to the (LO)i. Then 

the whole delay we can modeled as 
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, where 
γ

λ iqi tE )(⋅
 and 

γ
λ ijqij tE )(⋅

 

define individual contribution of computation queue delay 

(M/M/m) and communication channel delay (M/M/1) of 

every node to the whole delay. For establishing E(tq)i for 

computation queue delay it is necessary to know λi as the 

whole intensity of the input flow to the message queue 

where += ii γλ  all intern inputs flow to i-th node. 

The intern input flow to i-th node is defined as the input 

from other connected nodes. We can express it in two ways 

• through solving a system of linear equations in matrix 

form as R⋅+= λγλ   

• using of two data structures in form of tables and that is 

the routing table (RT) and destination probability tables 

(DPT).  

In related model the routing table creates deterministic 

logical way from source i to the destination j. Concretely 

RT(i,j) has index (1,...,N) of the next node on the route from 

i to j. This assumption of the fixed routing is not rare. We 

have proved also experimental, that the fix routing produces 

good analytical results in comparison to the alternate 

adaptive routing in a concrete communication network. The 

destination probability table destiny for each i,j pair the 

probability, that the message which outstands in node i is 

destined for node j. This table with n x n dimension and 

elements DPT (i,j) terminates which fraction of the whole 

extern input γi has the destination j, that is ),( jiDTPi ⋅γ . A 

path through the transport network we can define as the 

sequence (x1, x2, ... , xm) in which 

1) exist physical communication channel, which connects 

1-m , ... 1,2,k , a 1 =kk xx     

2) kjk  j, , a ≠∀kj xx  (they do not exist loops). 

We can define path with record ”path (j→k,i)” as 

expression of the ordered sequence nodes, which are on the 

route from node j to the node k and they pass step by step 

through nodes i. That is xi=j, xm=k, xp=i and mp ≤<1 . 

We define then ∑
→∈

U

ikjpathk ),(

 

as the summation over the set of all destination nodes k so, 

that node i lies on the route from the source node j. Then we 

get the following relation  

The intern input flow to i-th node = 

),(
1 1

kjDTP
U

j

U

k

j ⋅∑ ∑
= =

γ , for i)k,(jpath k , →∈≠ ij  

and whole input flow to node i as 

∑ ∑
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⋅+=
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for i)k,(jpath k , →∈≠ ij  

We supposed also that the incoming demands are 

exponential distributed and that queue servicing algorithm is 

FIFO (First In – First Out). The program queue PQi is 

servicing through one or more the same computation 

processors, which performed incoming demands (parallel 

processes). In demand servicing in a given node could be 

two possibilities 

• demand will be routed to another node of the transport 

networks by their placing to the one of the used 

communication channel (IPC communication)  

• demand is in the addressed node and she will leave 

communication network (finishing of parallel 

algorithms in this node) of the given node). 

To every communication channel is set the queue of the 

given communication lines (LQ), which stores the demands 

(their pointers) who are awaiting the communication 

through this communication channel. Also in this case we 

supposed its unlimited capacity, exponential interarrival 

time distribution of input messages and the servicing 

algorithm FIFO. Every communication line queue has its 

communication capacity Sij (in data units per second). 

Because we supposed the exponential demand length 

distribution the servicing time is exponential distributed too 

with average servicing time 1/ µ Sij, where µ is the average 

message length and Sij is the communication capacity of 

node i and of communication channel j. For simplicity we 

will assume, as it is obvious, that Sij is a part of µ. To find the 

average waiting time in the queue of the communication 

system we consider the model of one communication queue 

part node as M/M/1 queuing theory system according Figure 

12.  

 

Figure 12. Model of one M/M/1 communication channel of the i-th node. 

The total incoming flow to the communication channel j 

at node i which is given through the value λij and we can 

determine it with using of routing table and destination 

probability table in the same way as for the value λi. Then ρij 

as the utilization of the communication channel j at the node 

i is given as 

ij

ij

ij
Sµ

λ
ρ =  

The total average delay time in the queue E(tq)i is 

ijij

ijqtE
λµ −

= 1
)(  

If we now substitute the values for Ti and Tij to the 

relation for T we can get finally the relation for the total 

average delay time of whole transport system as 
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6.2. Suggestion and Derivation of more Precise Models 

6.2.1. Model with M/D/m and M/D/1 Systems 

The used model were build on assumptions of modeling 

incoming demands to program queue as Poisson input 

stream and of the exponential interarrival time between 

communication inputs to the communication  channels. 

The idea of the previous models were the presumption of 

decomposition to the individual independent channels 

together with the independence presumption of the demand 

length, that is demand lengths are derived on the basis of 

the probability density function pi = µ e
-µt

 for t > 0 and 

f(t)=0 for t ≤ 0 always at its input to the node. On this basis 

it was possible to model every used communication 

channel as the queuing theory system M/M/1 and to derive 

the average value of delay individually for every channel 

too. The whole end-to-end delay was then simply the sum 

of the individual delays of the every used communication 

channel.  

These conditions are not fulfilled for every input load, 

for all architectures of node and for the real character of 

processor service time distributions. These changes could 

cause imprecise results. To improve the mentioned 

problems we suggested the behavior analysis of the 

modeled NOW module improved analytical model (Figure 

13), which will be extend the used analytical model to more 

precise analytical model supposing that 

• we consider to model computation activities in every 

node of NOW network as M/D/m system 

• we consider an individual communication channels 

in i-th node as M/D/1 systems. In this way we can 

take into account also the influence of real non 

exponential nature of the interarrival time of inputs 

to the communication channels. 

These corrections may to contribute to precise behavior 

analysis of the NOW network for the typical 

communication activities and for the variable input loads. 

According defined assumption to modeling of the 

computation processors we use the M/D/m queuing theory 

systems according Figure 13. To find the average program 

queue delay we used the approximation formula for M/D/m 

queuing theory system [14, 15] according as 
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, in which 

• ρi - is the processor utilization at i-th node for all used 

processors 

• mi - is the number of used processors at i-th node  

• E(tw)(M/D/1), E(tw) (M/M/1) and E(tw) (M/M/m) are 

the average queue delay values for the queuing theory 



 American Journal of Networks and Communications 2013; 2(5): 112-124 121 

 

systems M/D/1, M/M/1 and M/M/m respectively 

 

Figure 13. Precise mathematical model of i-th node. 

The chosen approximation formulae we selected from 

two following points 

• for his simply calculation 

• if the number of used processors equals one the used 

relation gives the exact solution, that is W(M/D/1) 

system. Such number of processors is often used in 

praxis 

• if the number of processors greater than one (mi>1) 

the used relation generate a relative error, which is not 

greater as 1%. This fact we verified and confirmed 

through simulation experiments. 

Let ix  define the fixed processing time of the i-th node 

processors and E(tw)i (PQ) the average program queue 

delay in the i-th node. Then ρi, as the utilization of the i-th 

node, is given as 

i

ii
i

m

x.λρ =  

Then the average waiting time in PQ queue 

E(tw)i(M/D/mi) is given trough the following relations 
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By substituting relations for ρi, E(tw)i(M/D/1), 

E(tw)i(M/M/1) and E(tw)i(M/M/mi) in the relation for  

E(tw)i(M/D/mi) we can determine E(tw)i(PQ). Then the 

total average delay for the communication activities in i-th 

node is simply the sum of average message queue delay 

(MQ) plus the fixed processing time 

iiwiw xPQtEtE += )()()(  

To find the average waiting time in the queue of the 

communication system we consider the model of one 

communication queue part node as M/M/1 queuing theory 

system according Figure 12. Let ijx  determine the 

average servicing time for channel j at the node i. Then ρij 

as the utilization of the communication channel j at the 

node i is given as 

ij

ijij

ij
S

xλ
ρ =  

where Sij is the communication channel speed of j-th node. 

For simplicity we will assume that Sij =1. The total 

incoming flow to the communication channel j at node i 

which is given through the value λij and we can determine 

it with using of routing table and destination probability 

table in the same way as for a value λi. Let E(tw)ij(LQ) be 

the average waiting queue time for communication channel 

j at the node i. Then 
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The total average delay value is the queue E(tw)ij is given 

then as 
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There If we now substitute the values for E(tq)i and 

E(tq)ij to the relation for E(tq)now we can get finally the 

relation for the total average delay time of whole NOW 

model is given as 
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6.2.2. Other Real Analytical Models 

6.2.2.1. Analytical Model with M/M/m and M/D/1 Systems 

This model is mixture of analyzed model. The first part 

of final total average time E(tq)i we get from chapter 6.1 

and second part from 6.2.1 one. Then for E(tq)now we can 

get finally 
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6.2.2.2. Model with M/D/m and M/M/1 Systems 

In this model the first part of final total average time 

E(tq)i we can also get from chapter 6.2.1 and second part 

from 6.1 respectively. Then for E(tq)now we get for this 

model finally 
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7. Analytical Model of Real Grid 

Systems 

We have defined Grid system as network of NOW 

network modules.  Let N is the number of individual NOW 

networks or similar clusters. Then final total average time 

E(tq)grid 
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where 

• ∑
=

=
N

i

i

1

γα represent the sum of individual total extern 

intensities to the i-th NOW module in the Grid 

• E(tq)i now correspondent to individual average times in 

i- th NOW module (i=1, 2, … N). 

8. Results 

Figure 14 and Figure 15 represent results and relative 

errors for the average value of the total message delay in the 

5-noded communication network so for classical analytical 

model (M/M/m + M/M/1) as for developed more precise 

analytical model (M/D/m + M/D/1) in which for 

multiprocessor’s node activities we consider very real fixed 

latency. The same fixed delay was included to the average 

communication delay at each node and in simulation model 

too. These assumptions correspondence to the same 

communication speeds in each node’s communication 

channel. If used communication channels do not have the 

same communication speeds then communication latencies 

are different constants. In both considered analytical models 

(M/M/m + M/M/1, M/D/m + M/D/1) performed 

experiments have proved that decreasing of processor 

utilization ρ cause decreasing of total average delay in NOW 

module E(tq)now. Therefore parallel processes are waiting in 

parallel processes queues shorter time. In contrary 

decreasing of node’s communication channel speed increase 

communication channel utilization and then data of parallel 

processes have to wait longer in communication channel 

queues and increase the total node’s latency. Tested results 

have also proved the influence of real non exponential 

nature of the input inter-arrival time to node’s 

communication channels. In relation to it the analytical 

model M/D/m + M/D/1 provides best results and the 

analytical model M/M/m + M/M/1 the worst ones. The 

results for other possible mixed analytical models (M/M/m + 

M/D/1, M/D/m + M/M/1) provide results between the best 

and worst solutions. For simplicity deterministic time to 

perform parallel processes at node’s multiprocessor 

activities (the servicing time of PQ queue) was settled to 8µs 

and the extern input flow for each node was the same 

constant too. 

 

Figure 14. Comparison of analyzed models. 

To vary node’s processor utilization we modified the 

extern input flow in the same manner for each node of NOW 

module. For both analytical models (the best and the worst 

cases) are at Figure 15 the relative errors in relation to 

simulation results. The best analytical model (M/D/m + 

M/D/1) provides very precision results in the whole range of 

input workload of multiprocessors and every 

communication channel’s utilization with relative error, 

which does not exceed 6.2% and in most cases are in the 

range up to 5%. This is very important to project heavily 

loaded NOW network module (from about 80 to 90%), 

where the accurate results are to be in bad need of to avoid 

any bottleneck congestions or some other system 

instabilities. The performed comparison of this best 

analytical model to analytical model (M/M/m + M/M/1) 

according Figure 12 show improvements in all range of 

input node’s multiprocessor loads (from 20 to 90%).  

 

Figure 15. Relative errors of analyzed models. 

The relative errors of worst analytical model are from 7 to 

25%. This is due influences of processes queues delays, the 

nature of interarrival input to the communication channel in 

the case of high processor utilization. All developed 

analytical models could be applied also for large NOW 

networks practically without any increasing of the 

computation time in comparison to simulation method 

because of their explained module’s structure based on 

NOW module. Simulation models require oft three orders of 
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magnitude more computation time for testing such a massive 

metacomputer. Therefore limiting factor of the developed 

analytical models will not be computation time, but space 

complexity of memories for needed RT and DPT tables. 

These needed RT and DPT tables require O(n
2
) memory 

cells, thus limiting the network analysis to the number of N 

nodes about 100-200 for the common SMP multiprocessor. 

In case of possible solving system of linear equations (SLE) 

to find in analytical way node’s λi and λij respectively input 

intensities, most parallel algorithms use to its solution Gauss 

elimination method (GEM). These GEM parallel algorithms 

have computation complexity given as O(n
3
) floating point 

multiplications and a similar number of additions [2, 9]. 

These values are however adequate to handle most existing 

communication network of based NOW module. In addition 

to it also for any future massive metacomputers we would be 

always used hierarchically modular architecture, which 

consist on such simpler NOW modules.  

9. Conclusion and Perspectives 

Performance evaluation of computers generally used to be 

a very hard problem from birthday of computers. It was very 

hard to apply any analytical methods (for example known 

results of queuing theory) to performance evaluation of 

sequential computers because of their high number of not 

predictable parameters. Secondly endless user demands to 

increase computer performance were to be done more 

quickly through continues technology improvements and 

computer architecture changes. Application incorporation of 

various forms of parallel principles for a long time create 

more stabile conditions to apply performance evaluation 

methods mainly for parallel computers (actually dominant 

using of SMP multiprocessors and multicores, NOW and 

Grid systems) open more possibilities to apply mainly a 

queuing theory results to analyze performance of parallel 

structured computers. This implies one of known queuing 

theory results that many inputs to queuing theory system, 

which create shared stream and which are generating at 

various independent resources by chance, could be a very 

good approximation of Poisson distribution as a basic 

assumption to solve such systems in analytical way. 

Therefore we are able to model parallel computing nodes 

(multiprocessor, multicores, workstations etc.) of any 

actually dominant or perspective parallel computer (SMP, 

NOW, Grid, metacomputer) as M/D/m queuing theory 

systems and computing node’s communication channels as 

M/D/1 queuing theory systems respectively. 

Then such very flexible modeling tool (queuing theory), 

based on preferred analytical solutions show real paths to a 

very effective and practical performance analysis tool 

including massive NOW networks or another types of 

massive computer networks (metacomputer, Grid).  

In summary developed more precise analytical models 

could be applied to performance modeling of dominant 

parallel computers and that in following typical cases    

• single computing node based on SMP parallel 

computer (multiprocessors or multicores) 

• NOW based on workstations (multiprocessors or 

multicores) 

• Grid (Network of NOW network modules) 

• mixed parallel computers (SMP, NOW, Grid) 

• metacomputers (massive Grid). 

For our further research work in relation to dominant 

trends in parallel computers (SMP, NOW, Grid), based of 

powerful workstations, we will be looking for preferred 

analytical models in which could be to study load balancing, 

inter-process communication (IPC) in both parallel and 

distributed computing, effective transport protocols, 

influence of various parallel computer architectures, 

performance prediction etc. We would be also like to 

analyze  

• role of adaptive routing in considered analytical 

models [5] 

• to prove, or to indicate experimentally, the role of the 

independence assumption, if we are looking for higher 

moments of overhead latencies (IPX communication – 

parallel and distributed computing, synchronization, 

parallelization, architecture etc.)  

• to verify analytical models also for node’s limited 

resources capacities – buffers, communication 

channels etc., and for other existing queue servicing 

algorithms than standard assumed FIFO (First in First 

out) [12, 15]. 
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