

American Journal of Networks and Communications
2013; 2(5): 112-124

Published online October 30, 2013 (http://www.sciencepublishinggroup.com/j/ajnc)

doi: 10.11648/j.ajnc.20130205.11

Performance modeling of parallel computers NOW and
Grid

Peter Hanuliak, Michal Hanuliak

Dubnica Technical Institute, Sladkovicova 533/20, Dubnica nad Vahom, 018 41, Slovakia

Email address:
phanuliak@gmail.com (P. Hanuliak), michal.hanuliak@gmail.com (M. Hanuliak)

To cite this article:
Peter Hanuliak, Michal Hanuliak. Performance Modeling of Parallel Computers NOW and Grid. American Journal of Networks and

Communications. Vol. 2, No. 5, 2013, pp. 112-124. doi: 10.11648/j.ajnc.20130205.11

Abstract: The paper describes development, realization and verification of more precise analytical models for the study of

the basic performance parameters of parallel computers based on connected parallel computers (Cluster, NOW, Grid). At first

the paper describes very shortly the developing steps of parallel computer architecture and then he summarized the basic

concepts for performance modeling of mentioned parallel computers. To illustrate theoretical evaluation concepts the paper

considers in its experimental part the achieved results on concrete analyzed examples and their comparison. The suggested

model considers for every node of the NOW or Grid networks one part for the own workstation’s activities and another one

for node’s communication channel modeling of performed data communications. In case of using multiprocessor system, as

modern node’s communication processor, the suggested model considers for own node’s activities M/D/m queuing theory

system and for every node’s communication channel M/D/1 system. Based on these more realistic assumptions we have been

developed improved analytical models to account the real no exponential nature of the inputs to the modeling queuing

systems. The achieved results of the developed models were compared with the results of the common used analytical and

simulation model to estimate the magnitude of their improvement. The developed analytical models could be used under

various ranges of input analytical parameters, which influence the architecture of NOW or Grid computer networks and

which are interested from the sight of practical using. These consequences are in relation to the developed analytical models

and their verifications through simulation model.

Keywords: Parallel Computer, Network of Workstation (NOW), Cluster, Grid, Analytical Modeling, Queuing Theory,

Performance Evaluation, Queuing Theory System

1. Developing Periods in Parallel

Computers

In the first period of parallel computers between 1975

and 1995 dominated scientific supercomputers, which were

specially designed for the high performance computing

(HPC). These parallel computers have been mostly used

computing models based on data parallelism. Those

systems were way ahead of standard common computers in

terms of their performance and price. General purpose

processors on a single chip, which had been invented in the

early 1970’s, were only mature enough to hit the HPC

market by the end of the1980s, and it was not until the end

of the 1990’s that connected standard workstation or even

personal computers (PC) had become competitive at least

in terms of theoretical peak performance. Increased

processor performance was caused through massive using

of various parallel principles in all forms of produced

processors. Parallel principles were used so in single PC’s

and workstations (scalar or super scalar pipeline,

symmetrical multiprocessor systems - SMP) [1] so as on

POWER PC as in connected network of workstations

(NOW). Gained experience with the implementation of

parallel principles and intensive extensions of computer

networks, leads to the use of connected computers for

parallel solution. These trends are to be characterized

through downsizing of supercomputers as Cray/SGI, T3E

and from other massive parallel systems [16] (number of

used processor >100) to cheaper and more universal

parallel systems in the form of a network of workstations

(NOW). This period we can name as the second developing

period. Their large growth since 1980 have been stimulated

by the simultaneous influence of three basic factors [10, 19]

• high performance processors and computers

• high speed interconnecting networks

 American Journal of Networks and Communications 2013; 2(5): 112-124 113

• standardized tools for development of parallel

algorithms (Shared memory, distributed memory).

Developing trends are actually going toward building of

wide spread connected NOW networks with high

computation and memory capacity (Grid). Conceptually

Grid comes to the definition of metacomputer [31].

Metacomputer can be understood as the massive computer

network of computing nodes built on the principle of the

common use of existing processors, memories and other

resources with the objective to create an illusion of one

huge, powerful supercomputer. Such higher integrated

forms of NOW’s (Grid module) create various actually

Grid systems or metacomputers we can define as the third

period in developing trends of parallel computers.

2. Classification of Parallel Systems

It is very difficult to classify all existed parallel systems.

But from the point of programmer-developer we can divide

them [4, 10] to the two following different groups

• synchronous parallel architectures. These are used for

performing the same or very similar computation on

different sets of data. They are often used under central

control, that means under the global clock

synchronization (vector, array system etc.) or a

distributed local control mechanism (systolic systems

etc.). The typical examples of synchronous parallel

computers illustrate Figure 1 on its left side. Some of

used parallel principles in past time are step-by-step

applied in actually modern personal computers (PC)

for example in a form of SIMD (Single instruction

multiple data) computer instructions within their

computer set instruction (CSI)

• asynchronous parallel computers. They are composed

of a number of fully independent computing nodes

(processors, cores or computers. In programming

parallel algorithms there are necessary to use inter

process communications (IPC). To this group belong

mainly various forms of computer networks (cluster),

network of workstation (NOW) or more integrated

Grid modules in the form as any networks of NOW

networks (Grid). The typical examples of

asynchronous parallel computers illustrate Figure 1 on

its right side. According long-time trends

asynchronous parallel computers based on PC

computers (single, SMP) are dominant parallel

computers [16, 27].

Virtual
parallel computer

SIMD

Synchronous

Systolic

Vector/Array

Others

Asynchronous

SMP

GRID

NOW

Others

Figure 1. Classification of parallel computers.

3. Architectures of Parallel Computers

3.1. Symmetrical Multiprocessor System

Symmetrical multiprocessor system (SMP) is a multiple

using of the same processors or cores which are

implemented on motherboard in order to increase the whole

performance of such system. Typical common

characteristics are following

• each processor or core (computing node) of the

multiprocessor system can access main memory

(shared memory)

• I/O channels or I/O devices are allocated to individual

computing nodes according their demands

• integrated operation system coordinates cooperation of

whole multiprocessor resources (hardware, software

etc.).

Concept of such multiprocessor system illustrates Figure

2.

Hardware:

•

•

•
•

processors or cores (
units)
shared memory or shared

shared I O devices

hared I/O channels

CPU

multiport memory

/

s

Software:

•

•

only one integrated
operation system
abilities of system

reconfiguration

Control signals Messages

Task stream

Figure 2. Typical characteristics of multiprocessor systems.

Typical practical architecture example of eight

multiprocessor systems (Intel Xeon) illustrates Figure 3.

114 Peter Hanuliak et al.: Performance Modeling of Parallel Computers NOW and Grid

Memory

Bank 0-3
Memory

Bank 0-3

Max

16 GB

Max

16 GB

PROfusion

Pent.

III x.

Pent.

III x.

Pent.

III x.

Pent.

III x.

Pent.

III x.
Pent.

III x.

Pent.

III x.
Pent.

III x.

Bus 1

Bus 2 Bus 2

Left bus
100 MHz

Right bus
100 MHz

Left memory
port (Cache)

Right memory
port (Cache)

PCI
bridge

PCI
bridge

PCI
bridge

PCI
bridge

Bus 13
100 MHz V/V bus

Control cards
64-bit

v/v bus

Slots
64-bit.,
66 MHz

“hot plug”

PROfusion - cross of 3 bus and 2 memory ports (parallel)

PCI cards - type Enthanced PCI (64 bit, 66 MHz, “Hot Plug” - on-line exchange)

switch

PCI PCI PCI PCI

Figure 3. Architecture of multiprocessor (8-Intel processor).

3.2. Network of Workstations

There has been an increasing interest in the use of

networks of workstations (NOW) connected together by

high speed networks for solving large computation intensive

problems. This trend is mainly driven by the cost

effectiveness of such systems as compared to massive

multiprocessor systems with tightly coupled processors and

memories (Supercomputers). Parallel computing on a cluster

of workstations connected by high speed networks has given

rise to a range of hardware and network related issues on any

given platform [6]. With the availability of cheap personal

computers, workstations and networking devises, the recent

trend is to connect a number of such workstations to solve

computation intensive tasks in parallel on such clusters.

Network of workstations [13, 28] has become a widely

accepted form of high performance computing (HPC). Each

workstation in a NOW is treated similarly to a processing

element in a multiprocessor system. However, workstations

are far more powerful and flexible than processing elements

in conventional multiprocessors (Supercomputers). To

exploit the parallel processing capability of a NOW, an

application algorithm must be paralleled. A way how to do it

for an application problem builds its decomposition strategy.

This step belongs to a most important step in developing

effective parallel algorithm [13, 18].

PC 1 PC 2 PC 3 PC n. . .

- switch
s

s

Myrinet
- Myrinet port
- 1G Ethernet (10G Ethernet) port

Figure 4. Architecture of NOW.

Principal example of networks of workstations is at

Figure 4. The individual workstations are mainly powerful

workstations based on multiprocessor or multicore platform.

3.3. Grid Systems

The In general Grids represent a new way of managing

and organizing of computer networks and mainly of their

deeper resource sharing (Figure 5.).

PC 1 PC 2 PC 3 PC n. . .

- switch
s

s

Myrinet
- Myrinet port
- 1G Ethernet (10G Ethernet) port

Figure 5. Architecture of Grid node.

Conceptually they go out from a structure of virtual

parallel computer based on computer networks. In general

Grids represent a new way of managing and organizing of

resources like network of NOW networks. This term define

massive computational Grid with following basic

characteristics

• wide area network of integrated free computing

resources. It is a massive number of interconnected

networks, which are connected through high speed

connected networks during which time whole massive

system is controlled with network operation system,

which makes an illusion of powerful computer system

(Virtual supercomputer)

• grants a function of metacomputing that means

computing environment, which enables to individual

applications a functionality of all system resources

• system combines distributed parallel computation with

remote computing from user workstations.

3.3.1. Conventional HPC Environment Versus Grid

Environments

In Grids, the virtual pool of resources is dynamic and

diverse, since the resources can be added and withdrawn at

any time according to their owner’s discretion, and their

performance or load can change frequently over the time.

The typical number of resources in the pool is of the order

of several thousand or even more. An application in a

conventional parallel environment (HPC computing)

typically assumes a pool of computational nodes from (a

subset of) which a virtual concurrent machine is formed [4,

24]. The pool consists of PC’s, workstations, and possibly

supercomputers, provided that the user has access (valid

login name and password) to all of them. Such virtual pool

of nodes for a typical user can be considered as static and

this set varies in practice in the order of 10 – 100 nodes. At

table 1 we summarize mine analyzed differences between

conventional distributed and Grid systems. We can also

generally say that

• HPC environments are optimized to provide maximal

performance

• Grids are optimized to provide maximum of existed

resource capacities.

 American Journal of Networks and Communications 2013; 2(5): 112-124 115

Table 1. Comparison of environments in HPC and Grid computing

 Conventional HPC environments Grid environments

1. A virtual pool of computational nodes A virtual pool of resources

2. A user has access (credential) to all nodes in the pool A user has access to the pool but not to individual nodes

3. Access to a node means access to all resources on the node Access to a resource may be restricted

4. The user is aware of the applications and features of the nodes User has little or no knowledge about each resource

5. Nodes belong to a single trust domain Resources span multiple trust domains

6. Elements in the pool 10 – 100, more or less static Elements in the pool >>100, dynamic

3.4. Integration of Parallel Computers

With the availability of cheap personal computers,

workstations and networking devises, the recent trends are

to connect a number of such workstations to solve

computation intensive tasks in parallel on various

integrated forms of clusters based on computer networks.

We illustrated at Figure 6 typical integrated complex

consisted of NOW networks modules. It is clear that any

classical parallel computers (massive multiprocessor,

supercomputers etc.) in the word could be a member of

such NOW [29].

For the support of reaching connectivity to any of existed

integrated parallel computers in Europe (supercomputers,

NOW, Grid) we can use the European classical massive

parallel systems by means of scientific visits of project

participants in the HPC centers of EU. These HPC centers

are EPCC Edinburgh (UK), BSC (Barcelona, Spain),

CINECA (Bologna, Italy), GENCI (Paris, France), SARA

(Amsterdam, Netherland), HLRS (Stuttgart, Germany),

CSC (Helsinki, Finland).

Switch 1

Laboratory 1

Switch 2

Laboratory 2

Switch n -1

Switch n
(central)

.

.

.

GRID Modul
(SMP, NOW)

1

2

i Router

i

1

i

i

1

1

Laboratory n -1

Figure 6. Integration of NOW networks.

4. The Role of Performance

Quantitative evaluation and modeling of hardware and

software components of parallel systems are critical for the

delivery of high performance. Performance studies apply to

initial design phases as well as to procurement, tuning and

capacity planning analysis. As performance cannot be

expressed by quantities independent of the system workload,

the quantitative characterization of resource demands of

application and of their behavior is an important part of any

performance evaluation study. Among the goals of parallel

systems performance analysis are to assess the performance

of a system or a system component or an application, to

investigate the match between requirements and system

architecture characteristics, to identify the features that have

a significant impact on the application execution time, to

predict the performance of a particular application on a

given parallel system, to evaluate different structures of

parallel applications.

The individual workstations are mainly powerful

workstations based on multiprocessor or multicore platform.

4.1. Performance Evaluation Methods

The fundamental concepts have been developed for

evaluating parallel computers. Trade-offs among these

performance factors are often encountered in real-life

applications. To the performance evaluation we can use

following methods

• analytical methods

� application of queuing theory [7, 8]

� asymptotic (order) analysis [11, 13]

• simulation [20]

• experimental measurement

� benchmarks [17, 23]

� modeling tools [30, 22]

� direct parameter measuring [11, 13]

When we solve a model we can obtain an estimate for a

set of values of interest within the system being modeled, for

a given set of conditions which we set for that execution.

These conditions may be fixed permanently in the model or

left as free variables or parameters of the model, and set at

runtime. Each set of m input parameters constitutes a single

point in m-dimensional input space. Each solution of the

model produces one set of observations. Such a set of n

values constitutes a single point in the corresponding

n-dimensional observation space. By varying the input

conditions we hope to explore how the outputs vary with

changes to the inputs.

4.1.1. Analytic Techniques

There is a very well developed set of techniques which

can provide exact solutions very quickly, but only for a

116 Peter Hanuliak et al.: Performance Modeling of Parallel Computers NOW and Grid

very restricted class of models. For more general models it

is often possible to obtain approximate results significantly

more quickly than when using simulation, although the

accuracy of these results may be difficult to determine. The

techniques in question belong to an area of applied

mathematics known as queuing theory, which is a branch of

stochastic modeling [3, 25]. Like simulation, queuing

theory depends on the use of powerful computers in order

to solve its models quickly. We would like to prefer

techniques which yield analytic solutions.

4.1.2. The Simulation Method

Simulation is the most general and versatile means of

modeling systems for performance estimation. It has many

uses, but its results are usually only approximations to the

exact answer and the price of increased accuracy is much

longer execution times. To reduce the cost of a simulation

we may resort to simplification of the model which avoids

explicit modeling of many features, but this increases the

level of error in the results. If we need to resort to

simplification of our models, it would be desirable to

achieve exact results even though the model might not fully

represent the system. At least then one source of inaccuracy

would be removed. At the same time it would be useful if

the method could produce its results more quickly than

even the simplified simulation. Thus it is important to

consider the use of analytic and numerical techniques

before resorting to simulation. This method is based on the

simulation of the basic characteristics that are the input data

stream and their servicing according the measured and

analyzed probability values simulate the behavior model of

the analyzed parallel system. Its part is therefore the time

registration of the wanted interested discrete values. The

result values of simulation model have always their discrete

character, which do not have the universal form of

mathematical formulas to which we can set when we need

the variables of the used distributions as in the case of

analytical models. The accuracy of simulation model

depends therefore on the accuracy measure of the used

simulation model for the given task.

4.1.3. Asymptotic (Order) Analysis

In the analysis of algorithms, it is often cumbersome or

impossible to derive exact expressions for parameters such

as run time, speedup, efficiency, issoefficiency etc. In many

cases, an approximation of the exact expression is adequate.

The approximation may indeed be more illustrative of the

behavior of the function because it focuses on the critical

factors influencing the parameter. We have used an

extension of this method to evaluate parallel computers and

algorithms in [11, 13].

4.1.4. Experimental Measurement

Evaluating system performance via experimental

measurements is a very useful alternative for parallel

systems and parallel algorithms. Measurements can be

gathered on existing systems by means of benchmark

applications that aim at stressing specific aspects of the

parallel systems and algorithms. Even though benchmarks

can be used in all types of performance studies, their main

field of application is competitive procurement and

performance assessment of existing systems and algorithms.

Parallel benchmarks extend the traditional sequential ones

by providing a wider a wider set of suites that exercise each

system component targeted workload.

5. Little's Laws

One of the most important results in queuing theory is

Little's law. This was a long standing rule of thumb in

analyzing queuing systems, but gets its name from the

author of the first paper which proves the relationship

formally. It is applicable to the behavior of almost any

system of queues, as long as they exhibit steady state

behavior. It relates a system oriented measure - the mean

number of customers in the system - to a customer oriented

measure - the mean time spent in the system by each

customer (the mean end-to-end time), for a given arrival rate.

Little's law says

E (q) = λ . E (t q)

or it’s following alternatives

• E (w) = λ . E (tw)

• E (w) = E (q) – ρ (single service where m=1)

• E (w) = E (q) – m . ρ (m – services).

We can use also following valid equation

E (tq) = E (tw) + E (ts).

where the named parameters are as

• λ - arrival rate at entrance to a queue

• m - number of identical servers in the queuing system

• ρ - traffic intensity (dimensionless coefficient of

utilization)

• q - random variable for the number of customers in a

system at steady state

• w - random variable for the number of customers in a

queue at steady state

• E (ts) - the expected (mean) service time of a server

• E (q) - the expected (mean) number of customers in a

system at steady state

• E (w) - the expected (mean) number of customers in a

 queue at steady state

• E (tq) - the expected (mean) time spent in system

(queue + servicing) at steady state

• E (tw) - the expected (mean) time spent in the queue at

steady state.

5.2. Queuing Networks

Continuing the examination of analytically tractable

models, we look for useful results for networks of queues.

These can be divided into two main groups, known as

product form and non-product form. Product form networks

have the property that they can be regarded as

independently operating queues, where steady state can be

expressed as both a set of global balance equations on

customer flow in the whole network and a set of local

 American Journal of Networks and Communications 2013; 2(5): 112-124 117

balance equations on each queue. Local flow balance says

that the mean number of customers entering any queue

from all others must equal the number leaving it to go to all

others, including customers which leave and rejoin the

same queue immediately.

As an example of simplest queuing networks is serial

connection of two queuing theory systems according Figure

7. (Tandem network), for which we can get following final

solution, that the probability of k1 demands at first node

and k2 demands at second node is

21)1(.)1()()(),(21221121

kk
kpkpkkp ρρρρ −−=⋅=

where we assumed that

1 ,1
2

2

1

1 <=<=
µ
λρ

µ
λρ

and

• p (k1, k2) is the probability of k1 demands in the first

queue and k2 demands in the second queue

• p (k1) is the probability of k1 demands in the first

queue

• p (k2) is the probability of k2 demands in the second

queue.

µ1
λ λ λ

Figure 7. Tandem network of two M/M/1 queuing systems.

The final expression proves by evidence independence of

both M/M/1 queuing theory systems. Generalization to the

U queuing theory systems of M/M/1 or M/M/m made

Jackson (Jackson theorem) [5, 9]. Several different ways of

identifying this sort of behavior have been proposed, but

the name product form comes from Jackson`s theorem,

which expresses the joint probability of the numbers of

customers at each queue being a particular combination is

the product of their individual probabilities of having that

number. We begin by considering Jackson networks and

then look at the extension to a more general queuing theory

systems.

Based on Jackson result any network of queuing theory

systems without feedback loop (they are not allowed to

return any serviced demands again) with exponential

service distribution, which are servicing independent

Poisson input streams, generate also for a next node

independent Poisson input stream. The whole demand

probabilities for all nodes are given through multiplying of

individual independent queuing theory systems and that in

general as M/M/m systems. The outgoing stream will be

exactly Poisson on the assumption of unlimited size of

queue.

5.3. Jackson Theorem

Consider the case of a network of U queue/server nodes

(Workstations). Customers enter the network at node j in a

Poisson stream with rate γj. Each node has a multiple

servers m (workstations based on multiprocessor, for m = 1

workstations with single server) and service times are

distributed exponentially, with mean 1/µj, (j = l,…, U).

When a customer leaves node i it goes to node j with

probability rij. Customers from i leave the network with

probability

∑
=

−
U

j

ijr
1

1

Now let λi be the average total arrivals at node i,

including those from outside (external input) and those

from other nodes (Internal inputs). If the network is in

steady state, λi is also the rate of customers leaving i node

(including intern output). Overall we can formulate a set of

„flow balance equations" which express these flows.

λi= γi + ∑
=

U

i 1

λi rij j=1,2,…, U

As long as the network is open, i.e. at least one γi is

non-zero, this represents a set of linear simultaneous

equations with an obvious solution. Let traffic intensity at i

be

λi / mi . µj < 1 for every i. The joint distribution of the

number of customers p (k1, k2, ... kU) at each of the U

nodes, p1(k1), p2(k2), … pU (kU), can be expressed as

∏
=

=⋅⋅⋅=
U

i

iiUUU kpkpkpkpkkkp
1

221121 .)(...)()(),...,,(

This is Jackson theorem for M/M/m system. The

individual probabilities pi (ki) are given as










>

≤≤
=

mi pre ,
!

mi 1 pre ,
!

)(

)(

0

0

m

m
p

i

m
p

kp
mk

i

ii ρ

ρ

, where

() ()
() .
1!!

1
1

0

0

−−

=









−
+= ∑

m

i

mi

pm

m

i

m
p

ρρ

Jackson's theorem describes each node as an independent

single server system with Poisson arrivals and exponential

service times. The total average number of customers in the

whole NOW module is

E (q)now = ∑
=

U

i

iqE
1

)(

where E(q)i is given as

118 Peter Hanuliak et al.: Performance Modeling of Parallel Computers NOW and Grid

() ()[]







−−−

=

∑
=

+

m

i

i

m

i

iim
i

m
m

m
qE

0

2

1

!
!)1(

)(
)(

ρ
ρ

Then from Little's law, total time spent by customers in

the network E(t)q is

E[tq]now =∑
=

U

i i

iqE

1

)(

λ

Jackson theorem assumes for its applying verification of

assumed independence of individual network nodes. Every

element on its right side is a solution of independent

M/M/m geeing system with their average input value λi.

We can get the intensities of this individual inputs λi with

solving a system of linear differential equations for

concrete values of extern inputs λi and for given transition

matrix rij.

6. Modeling of the NOW and Grid

NOW is a basic module of any Grid system (Network of

NOW networks as for example Internet). Structure of

essential parts in any workstation (i-th node) of NOW based

on single processor (m=1) or multiprocessor system (m -

processors or cores) is illustrated at Figure 8. Inter process

communication (IPC) represents all needed communication

in NOW as

• communication among parallel processes

• control communication.

 ...

 . .
 .

Programs
Message queuei

IPC

P 2 P m
r

P 1

 LI 1

 LI 2

 LI u

.

. .

 Internal inputs

(other connected
WSiu)

External input
 (local WSi)

comm.

Figure 8. Structure of i – th computing node (WSi).

In principle we are assumed any constraints on structure

of communication system architecture. Then we are

modeling one workstation as a system with two dominant

overheads

• computation overheads (processor’s latency)

• communication latency [21, 26].

Figure 9. Mathematical model of i – th node of NOW.

To model these overheads through applying queuing

theory we created mathematical model of one i-th

computing node according Figure 9, which models

• computation overheads (processor’s latency) [2] as

queuing theory system

• every communication channel of i-th node LIi

i=1,2,…U (Link interface) as next queuing theory

systems (communication system).

Such communication network in NOW module we can

represent by a weighted graph where their nodes are

individual workstations. IPC data arrive at random at a

source node and follow a specific route in the networks

towards their destination node. Data lengths of

communicated parallel processes in data units (for example

in words) are considered to be random variables following

distributions according Jackson theorem. Those data units

are then sent independently through the communication

network nodes towards the destination node. At each node a

queue of incoming data units is served according to a

first-come first-served (FCFS) discipline. The defined

communication network generally creates oriented graph

(communication network) with U-nodes according to the

Figure 10, where

• γ1, γ2, ..., γU represent total extern intensities of input

data stream to the given WSi

• rij is a relation probabilities from node i to the

neighbouring connected nodes j (WSij) for (i= 1,...,U,

j = 1,...U)

• ui – the number of communication channels at i-th node

• U – number of computing nodes (workstations)

• β1, β2, ..., βU are the individual total external output

streams of data units from WSi.

Such a model corresponds in queuing theory to the model

of open servicing network. Adjective ”open” characterize

the extern input and output data stream to the servicing

transport network [14, 26]. In common they are the open

Markov servicing networks, in which the demand are mixed

together at their output from one queuing theory system to

another connected queuing theory system in a random way

to that time as they are leaving the network. To the given i-th

node the demand stream enter extern (from the network

side), with the independent Poisson arrival distribution and

the total intensity γi demands in seconds. After servicing at

i-th node the demand goes to the next j-th node with the

probability rij in such a way that the demand walks to the j-th

node intern (from the sight network). At this time the

demand departures from i-th node to the other nodes are

defined with probability

∑
=

−
U

j

ijr
1

1

 American Journal of Networks and Communications 2013; 2(5): 112-124 119

Figure 10. Model of IPC communication system (U=4).

6.1. Analytical Model of Workstations as M/M/m System

Let U be a node number of the whole transport system.

For every node of NOW (i-th node according Figure 11.) we

define the following parameters

• λi - the whole number of incoming demands to the i-th

node, that is the sum both of external and internal

inputs to the i-th node

• ∑
=

=
U

i

i

1

γγ represent the sum of individual total extern

intensities in the NOW

• λij - the whole input flow to the j-th communication

channel at i-th node

• E(tq)i - the average servicing time in the program queue

(the waiting in a queue and servicing time) in the i-th

node

• E(tq)ij - the average servicing time of the j-th queue of

the communication channel (the queue waiting time

and servicing time) at i-th node.

Figure 11. Mathematical model of i-th node.

Then the whole extern input flow to the transport network

is given as

∑
=

=
U

i

i

1

γγ

and
i

u

i

iji βλλ +=∑
=1

where βi represents the intern output from i-th node (finished

parallel programs in this node) which is not further

transmitted and is therefore not entering to the (LO)i. Then

the whole delay we can modeled as






















⋅+⋅= ∑ ∑

= =

U

i

u

j

ijqijiqinowq

i

tEtEtE
1 1

)()(
1

)(λλ
γ

, where
γ

λ iqi tE)(⋅
 and

γ
λ ijqij tE)(⋅

define individual contribution of computation queue delay

(M/M/m) and communication channel delay (M/M/1) of

every node to the whole delay. For establishing E(tq)i for

computation queue delay it is necessary to know λi as the

whole intensity of the input flow to the message queue

where += ii γλ all intern inputs flow to i-th node.

The intern input flow to i-th node is defined as the input

from other connected nodes. We can express it in two ways

• through solving a system of linear equations in matrix

form as R⋅+= λγλ

• using of two data structures in form of tables and that is

the routing table (RT) and destination probability tables

(DPT).

In related model the routing table creates deterministic

logical way from source i to the destination j. Concretely

RT(i,j) has index (1,...,N) of the next node on the route from

i to j. This assumption of the fixed routing is not rare. We

have proved also experimental, that the fix routing produces

good analytical results in comparison to the alternate

adaptive routing in a concrete communication network. The

destination probability table destiny for each i,j pair the

probability, that the message which outstands in node i is

destined for node j. This table with n x n dimension and

elements DPT (i,j) terminates which fraction of the whole

extern input γi has the destination j, that is),(jiDTPi ⋅γ . A

path through the transport network we can define as the

sequence (x1, x2, ... , xm) in which

1) exist physical communication channel, which connects

1-m , ... 1,2,k , a 1 =kk xx

2) kjk j, , a ≠∀kj xx (they do not exist loops).

We can define path with record ”path (j→k,i)” as

expression of the ordered sequence nodes, which are on the

route from node j to the node k and they pass step by step

through nodes i. That is xi=j, xm=k, xp=i and mp ≤<1 .

We define then ∑
→∈

U

ikjpathk),(

as the summation over the set of all destination nodes k so,

that node i lies on the route from the source node j. Then we

get the following relation

The intern input flow to i-th node =

),(
1 1

kjDTP
U

j

U

k

j ⋅∑ ∑
= =

γ , for i)k,(jpath k , →∈≠ ij

and whole input flow to node i as

∑ ∑
= =

⋅+=
U

j

U

k

iii kjDTP
1 1

),(γγλ ,

120 Peter Hanuliak et al.: Performance Modeling of Parallel Computers NOW and Grid

for i)k,(jpath k , →∈≠ ij

We supposed also that the incoming demands are

exponential distributed and that queue servicing algorithm is

FIFO (First In – First Out). The program queue PQi is

servicing through one or more the same computation

processors, which performed incoming demands (parallel

processes). In demand servicing in a given node could be

two possibilities

• demand will be routed to another node of the transport

networks by their placing to the one of the used

communication channel (IPC communication)

• demand is in the addressed node and she will leave

communication network (finishing of parallel

algorithms in this node) of the given node).

To every communication channel is set the queue of the

given communication lines (LQ), which stores the demands

(their pointers) who are awaiting the communication

through this communication channel. Also in this case we

supposed its unlimited capacity, exponential interarrival

time distribution of input messages and the servicing

algorithm FIFO. Every communication line queue has its

communication capacity Sij (in data units per second).

Because we supposed the exponential demand length

distribution the servicing time is exponential distributed too

with average servicing time 1/ µ Sij, where µ is the average

message length and Sij is the communication capacity of

node i and of communication channel j. For simplicity we

will assume, as it is obvious, that Sij is a part of µ. To find the

average waiting time in the queue of the communication

system we consider the model of one communication queue

part node as M/M/1 queuing theory system according Figure

12.

Figure 12. Model of one M/M/1 communication channel of the i-th node.

The total incoming flow to the communication channel j

at node i which is given through the value λij and we can

determine it with using of routing table and destination

probability table in the same way as for the value λi. Then ρij

as the utilization of the communication channel j at the node

i is given as

ij

ij

ij
Sµ

λ
ρ =

The total average delay time in the queue E(tq)i is

ijij

ijqtE
λµ −

= 1
)(

If we now substitute the values for Ti and Tij to the

relation for T we can get finally the relation for the total

average delay time of whole transport system as





























−
⋅+

−
⋅= ∑ ∑

= =

U

i

u

j ijij

ij

ii

inowq

i

tE
1 1

111
)(

λµ
λ

λµ
λ

γ

6.2. Suggestion and Derivation of more Precise Models

6.2.1. Model with M/D/m and M/D/1 Systems

The used model were build on assumptions of modeling

incoming demands to program queue as Poisson input

stream and of the exponential interarrival time between

communication inputs to the communication channels.

The idea of the previous models were the presumption of

decomposition to the individual independent channels

together with the independence presumption of the demand

length, that is demand lengths are derived on the basis of

the probability density function pi = µ e
-µt

 for t > 0 and

f(t)=0 for t ≤ 0 always at its input to the node. On this basis

it was possible to model every used communication

channel as the queuing theory system M/M/1 and to derive

the average value of delay individually for every channel

too. The whole end-to-end delay was then simply the sum

of the individual delays of the every used communication

channel.

These conditions are not fulfilled for every input load,

for all architectures of node and for the real character of

processor service time distributions. These changes could

cause imprecise results. To improve the mentioned

problems we suggested the behavior analysis of the

modeled NOW module improved analytical model (Figure

13), which will be extend the used analytical model to more

precise analytical model supposing that

• we consider to model computation activities in every

node of NOW network as M/D/m system

• we consider an individual communication channels

in i-th node as M/D/1 systems. In this way we can

take into account also the influence of real non

exponential nature of the interarrival time of inputs

to the communication channels.

These corrections may to contribute to precise behavior

analysis of the NOW network for the typical

communication activities and for the variable input loads.

According defined assumption to modeling of the

computation processors we use the M/D/m queuing theory

systems according Figure 13. To find the average program

queue delay we used the approximation formula for M/D/m

queuing theory system [14, 15] according as












⋅⋅

−
⋅−⋅−+

=

)//()(
)1//()(

)1//()(

16

245
)1()1(1

)//()(

iw

w

w

ii

i

ii

iw

mMMtE
MMtE

DMtE

m

m
m

mDMtE

ρ
ρ

, in which

• ρi - is the processor utilization at i-th node for all used

processors

• mi - is the number of used processors at i-th node

• E(tw)(M/D/1), E(tw) (M/M/1) and E(tw) (M/M/m) are

the average queue delay values for the queuing theory

 American Journal of Networks and Communications 2013; 2(5): 112-124 121

systems M/D/1, M/M/1 and M/M/m respectively

Figure 13. Precise mathematical model of i-th node.

The chosen approximation formulae we selected from

two following points

• for his simply calculation

• if the number of used processors equals one the used

relation gives the exact solution, that is W(M/D/1)

system. Such number of processors is often used in

praxis

• if the number of processors greater than one (mi>1)

the used relation generate a relative error, which is not

greater as 1%. This fact we verified and confirmed

through simulation experiments.

Let ix define the fixed processing time of the i-th node

processors and E(tw)i (PQ) the average program queue

delay in the i-th node. Then ρi, as the utilization of the i-th

node, is given as

i

ii
i

m

x.λρ =

Then the average waiting time in PQ queue

E(tw)i(M/D/mi) is given trough the following relations

)1(2
)1//()(

i

ii
iw

x
DMtE

ρ
ρ

−
⋅

=

i

ii

iw

x
MMtE

ρ
ρ

−
⋅

=
1

)1//()(

()
()

() ()
()i

i

i

m

j ii

m

ii

j

ii

ii

m

ii

iiw

m

x

m

m

j

m

m

m

mMMtE

i i

i

ρρ
ρρ

ρ
ρ

−
⋅








−′′
⋅+⋅

−
⋅

=

∑
−

= 1)1(!!

1!
)//()(

1

0

By substituting relations for ρi, E(tw)i(M/D/1),

E(tw)i(M/M/1) and E(tw)i(M/M/mi) in the relation for

E(tw)i(M/D/mi) we can determine E(tw)i(PQ). Then the

total average delay for the communication activities in i-th

node is simply the sum of average message queue delay

(MQ) plus the fixed processing time

iiwiw xPQtEtE +=)()()(

To find the average waiting time in the queue of the

communication system we consider the model of one

communication queue part node as M/M/1 queuing theory

system according Figure 12. Let ijx determine the

average servicing time for channel j at the node i. Then ρij

as the utilization of the communication channel j at the

node i is given as

ij

ijij

ij
S

xλ
ρ =

where Sij is the communication channel speed of j-th node.

For simplicity we will assume that Sij =1. The total

incoming flow to the communication channel j at node i

which is given through the value λij and we can determine

it with using of routing table and destination probability

table in the same way as for a value λi. Let E(tw)ij(LQ) be

the average waiting queue time for communication channel

j at the node i. Then

)1(
)()(

ij

ijij

ijw

x
LQtE

ρ
ρ

−
⋅

=

The total average delay value is the queue E(tw)ij is given

then as

() ij

ij

ijij

ijijwijw x
x

xPQtEtE +
−

⋅
=+=

ρ
ρ
1

)()()(

There If we now substitute the values for E(tq)i and

E(tq)ij to the relation for E(tq)now we can get finally the

relation for the total average delay time of whole NOW

model is given as

() ()







+++

=

∑ ∑
= =

U

i

u

j

ijijwiiw

nowq

i

xLQtExPQtE

tE

1 1

)()()()(
1

)(

γ

6.2.2. Other Real Analytical Models

6.2.2.1. Analytical Model with M/M/m and M/D/1 Systems

This model is mixture of analyzed model. The first part

of final total average time E(tq)i we get from chapter 6.1

and second part from 6.2.1 one. Then for E(tq)now we can

get finally

()





















++

−
⋅= ∑ ∑

= =

U

i

u

j

ijijw

ii

inowq

i

xLQtEtE
1 1

)()(
11

)(
λµ

λ
γ

6.2.2.2. Model with M/D/m and M/M/1 Systems

In this model the first part of final total average time

E(tq)i we can also get from chapter 6.2.1 and second part

from 6.1 respectively. Then for E(tq)now we get for this

model finally

()




























−
⋅++= ∑ ∑

= =

U

i

u

j ijij

ijiiwnowq

i

xPQtEtE
1 1

1
)()(

1
)(

λµ
λ

γ

122 Peter Hanuliak et al.: Performance Modeling of Parallel Computers NOW and Grid

7. Analytical Model of Real Grid

Systems

We have defined Grid system as network of NOW

network modules. Let N is the number of individual NOW

networks or similar clusters. Then final total average time

E(tq)grid








= ∑
=

N

i

nowiqgridq tEtE
1

)(
1

)(
α

where

• ∑
=

=
N

i

i

1

γα represent the sum of individual total extern

intensities to the i-th NOW module in the Grid

• E(tq)i now correspondent to individual average times in

i- th NOW module (i=1, 2, … N).

8. Results

Figure 14 and Figure 15 represent results and relative

errors for the average value of the total message delay in the

5-noded communication network so for classical analytical

model (M/M/m + M/M/1) as for developed more precise

analytical model (M/D/m + M/D/1) in which for

multiprocessor’s node activities we consider very real fixed

latency. The same fixed delay was included to the average

communication delay at each node and in simulation model

too. These assumptions correspondence to the same

communication speeds in each node’s communication

channel. If used communication channels do not have the

same communication speeds then communication latencies

are different constants. In both considered analytical models

(M/M/m + M/M/1, M/D/m + M/D/1) performed

experiments have proved that decreasing of processor

utilization ρ cause decreasing of total average delay in NOW

module E(tq)now. Therefore parallel processes are waiting in

parallel processes queues shorter time. In contrary

decreasing of node’s communication channel speed increase

communication channel utilization and then data of parallel

processes have to wait longer in communication channel

queues and increase the total node’s latency. Tested results

have also proved the influence of real non exponential

nature of the input inter-arrival time to node’s

communication channels. In relation to it the analytical

model M/D/m + M/D/1 provides best results and the

analytical model M/M/m + M/M/1 the worst ones. The

results for other possible mixed analytical models (M/M/m +

M/D/1, M/D/m + M/M/1) provide results between the best

and worst solutions. For simplicity deterministic time to

perform parallel processes at node’s multiprocessor

activities (the servicing time of PQ queue) was settled to 8µs

and the extern input flow for each node was the same

constant too.

Figure 14. Comparison of analyzed models.

To vary node’s processor utilization we modified the

extern input flow in the same manner for each node of NOW

module. For both analytical models (the best and the worst

cases) are at Figure 15 the relative errors in relation to

simulation results. The best analytical model (M/D/m +

M/D/1) provides very precision results in the whole range of

input workload of multiprocessors and every

communication channel’s utilization with relative error,

which does not exceed 6.2% and in most cases are in the

range up to 5%. This is very important to project heavily

loaded NOW network module (from about 80 to 90%),

where the accurate results are to be in bad need of to avoid

any bottleneck congestions or some other system

instabilities. The performed comparison of this best

analytical model to analytical model (M/M/m + M/M/1)

according Figure 12 show improvements in all range of

input node’s multiprocessor loads (from 20 to 90%).

Figure 15. Relative errors of analyzed models.

The relative errors of worst analytical model are from 7 to

25%. This is due influences of processes queues delays, the

nature of interarrival input to the communication channel in

the case of high processor utilization. All developed

analytical models could be applied also for large NOW

networks practically without any increasing of the

computation time in comparison to simulation method

because of their explained module’s structure based on

NOW module. Simulation models require oft three orders of

 American Journal of Networks and Communications 2013; 2(5): 112-124 123

magnitude more computation time for testing such a massive

metacomputer. Therefore limiting factor of the developed

analytical models will not be computation time, but space

complexity of memories for needed RT and DPT tables.

These needed RT and DPT tables require O(n
2
) memory

cells, thus limiting the network analysis to the number of N

nodes about 100-200 for the common SMP multiprocessor.

In case of possible solving system of linear equations (SLE)

to find in analytical way node’s λi and λij respectively input

intensities, most parallel algorithms use to its solution Gauss

elimination method (GEM). These GEM parallel algorithms

have computation complexity given as O(n
3
) floating point

multiplications and a similar number of additions [2, 9].

These values are however adequate to handle most existing

communication network of based NOW module. In addition

to it also for any future massive metacomputers we would be

always used hierarchically modular architecture, which

consist on such simpler NOW modules.

9. Conclusion and Perspectives

Performance evaluation of computers generally used to be

a very hard problem from birthday of computers. It was very

hard to apply any analytical methods (for example known

results of queuing theory) to performance evaluation of

sequential computers because of their high number of not

predictable parameters. Secondly endless user demands to

increase computer performance were to be done more

quickly through continues technology improvements and

computer architecture changes. Application incorporation of

various forms of parallel principles for a long time create

more stabile conditions to apply performance evaluation

methods mainly for parallel computers (actually dominant

using of SMP multiprocessors and multicores, NOW and

Grid systems) open more possibilities to apply mainly a

queuing theory results to analyze performance of parallel

structured computers. This implies one of known queuing

theory results that many inputs to queuing theory system,

which create shared stream and which are generating at

various independent resources by chance, could be a very

good approximation of Poisson distribution as a basic

assumption to solve such systems in analytical way.

Therefore we are able to model parallel computing nodes

(multiprocessor, multicores, workstations etc.) of any

actually dominant or perspective parallel computer (SMP,

NOW, Grid, metacomputer) as M/D/m queuing theory

systems and computing node’s communication channels as

M/D/1 queuing theory systems respectively.

Then such very flexible modeling tool (queuing theory),

based on preferred analytical solutions show real paths to a

very effective and practical performance analysis tool

including massive NOW networks or another types of

massive computer networks (metacomputer, Grid).

In summary developed more precise analytical models

could be applied to performance modeling of dominant

parallel computers and that in following typical cases

• single computing node based on SMP parallel

computer (multiprocessors or multicores)

• NOW based on workstations (multiprocessors or

multicores)

• Grid (Network of NOW network modules)

• mixed parallel computers (SMP, NOW, Grid)

• metacomputers (massive Grid).

For our further research work in relation to dominant

trends in parallel computers (SMP, NOW, Grid), based of

powerful workstations, we will be looking for preferred

analytical models in which could be to study load balancing,

inter-process communication (IPC) in both parallel and

distributed computing, effective transport protocols,

influence of various parallel computer architectures,

performance prediction etc. We would be also like to

analyze

• role of adaptive routing in considered analytical

models [5]

• to prove, or to indicate experimentally, the role of the

independence assumption, if we are looking for higher

moments of overhead latencies (IPX communication –

parallel and distributed computing, synchronization,

parallelization, architecture etc.)

• to verify analytical models also for node’s limited

resources capacities – buffers, communication

channels etc., and for other existing queue servicing

algorithms than standard assumed FIFO (First in First

out) [12, 15].

Acknowledgements

This work was done within the project “Modeling,

optimization and prediction of parallel computers and

algorithms” at University of Zilina. The authors gratefully

acknowledge crucial help of project supervisor Prof. Ing.

Ivan Hanuliak, PhD.

References

[1] Abderazek A. B., Multicore systems on-chip – Practical
Software/Hardware design, Imperial college press, 200 pp.,
August 2010

[2] Arora S., Barak B., Computational complexity - A modern
Approach, Cambridge University Press, 573 pp., 2009

[3] Cepciansky G., Schwartz L., Stochastic processes with
discrete states, LAP Lambert, Germany, 109 pp., 2013

[4] Coulouris G., Dollimore J., Kindberg T., Distributed Systems
– Concepts and Design (5 - th Edition), Addison Wesley, 800
pp., 2011

[5] Dattatreya G. R., Performance analysis of queuing and
computer network, University of Texas, Dallas, USA, 472 pp.,
2008

[6] Dubois M., Annavaram M., Stenstrom P., Parallel Computer
Organisation and Design, 560 pages, 2012

[7] Gautam Natarajan, Analysis of Queues: Methods and
Applications, CRC Press, 802 pages, 2012

124 Peter Hanuliak et al.: Performance Modeling of Parallel Computers NOW and Grid

[8] Gelenbe E., Analysis and synthesis of computer systems,
Imperial College Press, 324 pages, April 2010

[9] Giambene G., Queueing theory and telecommunications,
Springer, 585 pages, 2005

[10] Hager G., Wellein G., Introduction to High Performance
Computing for Scientists and Engineers, CRC Press, 356
pages, 2010

[11] Hanuliak P., Analytical method of performance prediction in
parallel algorithms, The Open Cybernetics and Systemics
Journal, United Kingdom, pp. 38-47, 2012

[12] Hanuliak P., Hanuliak M., Performance modeling of SMP
parallel computers, pp. 1-18, Int. Journal of Science,
Commerce and Humanities (IJSCH), , United Kingdom, Vol.
1, No 5, pp. 243/261, July 2013

[13] Hanuliak J., Hanuliak I., To performance evaluation of
distributed parallel algorithms, Kybernetes, Volume 34, No.
9/10, United Kingdom, pp. 1633-1650, 2005

[14] Hanuliak M., Hanuliak I., To the correction of analytical
models for computer based communication systems,
Kybernetes, Volume 35, No. 9, 1492-1504, United Kingdom,
2006

[15] Harchol-Balter Mor, Performance modeling and design of
computer systems, Cambridge University Press, 576 pages,
2013

[16] Hwang K. and coll., Distributed and Parallel Computing,
Morgan Kaufmann, 472 pages, 2011

[17] John L. K., Eeckhout L., Performance evaluation and
benchmarking, CRC Press, 2005

[18] Kshemkalyani A. D., Singhal M., Distributed Computing,
University of Illinois, Cambridge University Press, United
Kingdom, 756 pages, 2011

[19] Kirk D. B., Hwu W. W., Programming massively parallel
processors, Morgan Kaufmann, 280 pages, 2010

[20] Kostin A., Ilushechkina L., Modelling and simulation of
distributed systems, Imperial College Press, 440 pages, Jun
2010.

[21] Kushilevitz E., Nissan N., Communication Complexity,
Cambridge University Press, United Kingdom, 208 pages,
2006

[22] Kwiatkowska M., Norman G., and Parker D., PRISM 4.0:
Verification of Probabilistic Real-time Systems, In Proc. 23rd
Int. Conf. on CAV’11, Vol. 6806 of LNCS, Springer, pp.
585-591, 2011

[23] Le Boudec Jean-Yves, Performance evaluation of computer
and communication systems, CRC Press, 300 pages, 2011

[24] McCabe J., D., Network analysis, architecture, and design
(3rd edition), Elsevier/ Morgan Kaufmann, 496 pages, 2010

[25] Miller S., Probability and Random Processes, 2nd edition,
Academic Press, Elsevier Science, 552 pages, 2012

[26] Misra Ch. S., Woungang I., Selected topics in communication
network and distributed systems, Imperial college press, 808
pages, April 2010,

[27] Patterson D. A., Hennessy J. L., Computer Organization and
Design (4th edition), Morgan Kaufmann, 914 pages, 2011

[28] Peterson L. L., Davie B. C., Computer networks – a system
approach, Morgan Kaufmann, 920 pages, 2011

[29] Resch M. M., Supercomputers in Grids, Int. Journal of Grid
and HPC, No.1, p 1 - 9, January- March 2009

[30] Riano l., McGinity T.M., Quantifying the role of complexity
in a system’s performance, Evolving Systems, Springer
Verlag, pp. 189 – 198, 2011

[31] Wang L., Jie Wei., Chen J., Grid Computing: Infrastructure,
Service, and Application, CRC Press, 2009.

